ALLAN HANCOCK FOUNDATION PUBLICATIONS

os Anaeles OF
THE- UNIVERSITY OF SOUTHERN CALIFORNIA

First Series
ALLAN HANCOCK PACIFIC EXPEDITIONS

Volume 20
1955

ALLAN HANCOCK FOUNDATION PUBLICATIONS

ALLAN HANCOCK PACIFIC EXPEDITIONS

Volume 20
1955

CONTENTS

1. A Report on the Family Mytilidae (Pelecypoda)
(Plates 1-10; text-figures 1-78), by Tron Soot-Ryen
1-176
2. A Report on the Family Arcidae (Pelecypoda) (Plates 11-16; text-figures 79-95), by Helen Rost . . 177-250
Index 251-261

ALLAN HANCOCK PACIFIC EXPEDITIONS

A REPORT ON THE FAMILY MYTILIDAE (Pelecypoda)

(Plates 1-10; Text-figures 1-78)

BY

TRON SOOT-RYEN

THE UNIVERSITY OF SOUTHERN CALIFORNIA PRESS
LOS ANGELES, CALIFORNIA
1955

A REPORT ON THE FAMILY MYTILIDAE (Pelecypoda)

(Plates 1-10; Text-figures 1-78)

BY

TRON SOOT-RYEN

Director of Troms申 Museum, Troms申, Norway
Research Associate, Allan Hancock Foundation

The University of Southern California Publications
 Allan Hancock Pacific Expeditions
 Volume 20, Number 1
 Issued November 10, 1955
 Price \$3.25
 The University of Southern California Press
 Los Angeles, California

CONTENTS

Preface 1
Introduction 3
Nomenclature 8
List of specific names used for west American mytilids 9
The "Mytilus"-group 14
Systematical part 16
Key to genera of mytilids based on west American species 16
Genus Mytilus Linné 1758 18
Mytilus edulis Linné 1758 19
Mytilus californianus Conrad 1837 22
Genus Crenomytilus nov. 23
Genus Semimytilus nov. 25
Semimytilus algosus (Gould) 1850 25
Genus Perna Retzius 1788 29
Perna perna (Linné) 1758 30
Genus Choromytilus Soot-Ryen 1952 30
Choromytilus chorus (Molina) 1782 31
Choromytilus palliopunctatus (Carpenter) 1855 31
Genus Aulacomya Mörch 1853 32
Aulacomya ater (Molina) 1782 33
Genus Ischadium Jukes-Browne 1905 34
Ischadium recurvus (Rafinesque) 1820 36
Genus Hormomya Mörch 1853 36
Hormomya adamsiana (Dunker) 1856. 37
Hormomya granulata (Hanley) 1843 40
Genus Septifer Recluz 1848 40
Septifer bifurcatus (Conrad) 1837 41
Septifer zeteki Hertlein and Strong 1946 42
Genus Brachidontes Swainson 1840 43
Brachidontes multiformis (Carpenter) 1855 44
Brachidontes purpuratus (Lamarck) 1819 45
Brachidontes playasensis (Pilsbry and Olsson) 1935 46
Brachidontes puntarenensis (Pilsbry and Lowe) 1932 46
Brachidontes houstonius Bartsch and Rehder 1939 47
Genus Mytella nov. 47
Mytella falcata (Orbigny) 1846 50
Mytella speciosa (Reeve) 1857 52
Mytella guyanensis (Lamarck) 1819 53
Genus Arcuatula Lamy 1919. 55
Arcuatula demissa (Dillwyn) 1817 56
Genus Modiolus Lamarck 1799 56
Modiolus capax (Conrad) 1837 60
Modiolus fornicatus (Carpenter) 1865 62
Modiolus rectus (Conrad) 1837 63
Modiolus eiseni Strong and Hertlein 1937 64
Modiolus neglectus n. sp. 64
Modiolus sacculifer (Berry) 1953 65
Modiolus modiolus (Linné) 1758 66
Modiolus americanus (Leach) 1815 67
Genus Amygdalum Megerle von Mühlfeld 1811 68
Amygdalum pallidulum (Dall) 1916 69
Amygdalum americanum n. sp. 70
Genus Lioberus Dall 1898 71
Lioberus salvadoricus (Hertlein and Strong) 1946 72
Genus Musculus Röding 1798 72
Musculus senhousei (Benson) 1842 74
Musculus olivaceus Dall 1916 75
Musculus protractus Dall 1916 75
Genus Gregariella Monterosato 1834 76
Gregariella coarctata (Carpenter) 1856 77
Gregariella chenui (Recluz) 1842 78
Gregariella denticulata (Dall) 1871 79
Genus Crenella Brown 1827. 79
Crenella divaricata (Orbigny) 1853 80
Crenella decussata (Montagu) 1808 81
Genus Solamen Iredale 1924 81
Solamen columbianum (Dall) 1897 82
Genus Botula Mörch 1853 83
Botula fusca (Gmelin) 1791 86
Genus Dacrydium Torell 1859 86
Subgenus Quendreda Iredale 1936 86
Dacrydium (Quendreda) elegantulum n. sp. 87
Genus Adula Adams 1857. 88
Adula falcata (Gould) 1851 89
Adula soleniformis (Orbigny) 1846 90
Adula californiensis (Philippi) 1847 90
Adula diegensis (Dall) 1911 91
Genus Lithophaga Röding 1798 91
Subgenus Stumpiella nov. 93
Lithophaga (Stumpiella) calyculata (Carpenter) 1856. 93
Subgenus Diberus Dall 1898 94
Lithophaga (Diberus) canalifera (Hanley) 1843 95
Lithophaga (Diberus) plumula (Hanley) 1843 96
Lithophaga (Diberus) subula (Reeve) 1857 97
Subgenus Myoforceps Fischer 1886 97
Lithophaga (Myoforceps) aristata (Dillwyn) 1817 98
Subgenus Labis Dall 1916 99
Lithophaga (Labis) attenuata (Deshayes) 1836 99
Lithophaga (Labis) peruviana (Orbigny) 1846 100
Subgenus Leiosolenus Carpenter 1856 101
Lithophaga (Leiosolenus) spatiosa (Carpenter) 1856 102
Lithophaga (Leiosolenus) hancockin. sp. 102
List of material of the family Mytilidae preserved in the Allan
Hancock Foundation collections 104
References cited 145
Plates 155

A REPORT ON THE FAMILY MYTILIDAE (Pelecypoda)

(Plates 1-10; Text-figures 1-78)
BY TRON SOOT-RYEN

PREFACE

During the cruises of the Velero III and Velero IV from 1931 to the present year, a very valuable collection of mollusks has been accumulated in the Allan Hancock Foundation, the major part having been collected between Los Angeles and northern Peru and the Galapagos Islands, regions from which large collections are very scarce. Fortunately the larger part of the samples are preserved in alcohol and can be used for the study of the soft parts of the mollusks, and thus are far more useful than dried specimens only. The collection in the Allan Hancock Foundation is undoubtedly the richest and most valuable known from the regions investigated, and will add considerably to our knowledge of the molluscan fauna of the Pacific coast of America when it is properly studied. It is, therefore, to be hoped that trained specialists can work up this material as quickly as possible.

The present paper deals with the family Mytilidae found along the Pacific coasts of America south of Oregon, though a few specimens from Oregon, of species also occurring farther south, are included in the lists of the material. It has been possible to make a survey of the soft parts of the species and to give drawings of the mantle and other parts easily visible from the outside, and of details of hinges and muscle scars of the valves. Nearly all species are also represented by photographs on the accompanying plates. Four species are considered to be undescribed and several changes were found to be necessary in the generic placement of the species and in the general nomenclature. There might, however, still be a few unrecognized species of mytilids along the Pacific coast of America. I am not satisfied with the treatment of genera such as Brachidontes, Hormomya, Crenella, and Modiolus, and I believe that new material and a careful study of these groups, which is highly needed, is necessary before doubtful questions can be satisfactorily settled.

In an appendix is a list of all samples in the collection, arranged from north to south. The list of references is not intended to constitute a complete list of literature for this region but gives only those titles to which reference has been made.

Science will always be indebted to Captain Allan Hancock, whose interest in marine research has made the accumulation of this rich material possible.

Personally I wish to give my heartiest thanks to Captain Allan Hancock and to the Research Committee of the Allan Hancock Foundation for giving me the opportunity to work on this material as a Research Associate of the Foundation. I also wish to express my warmest thanks to Dr. Norman T. Mattox, who has helped me in many ways and who has taken the trouble to read the manuscript and correct the language. I am especially indebted to Mrs. Dorothy M. Halmos, librarian of the Hancock Library, who has brought the manuscript to a form corresponding to the other papers in this series, checked the names and references, and smoothed out the language. The drawings accompanying this paper have been carefully executed by the staff artist, Mr. Gaylen C. Hansen, who has shown a great interest in this difficult and time consuming work, for which I am very thankful. The photographs for the plates have been made by the staff photographer, Mr. Roy V. George.

I am indebted to many scientists for the use of collections in their care, for comparison and for loan of specimens, some of which are reproduced in the plates, and I wish here to express my gratitude to Dr. William J. Clench, Museum of Comparative Zoology, Cambridge, Mass.; Dr. Harald A. Rehder, U. S. National Museum, Washington, D. C.; Dr. Leo G. Hertlein, California Academy of Sciences, San Francisco; Dr. A. Myra Keen, Stanford University, Palo Alto; Dr. S. Stillman Berry, Redlands; Dr. Heinz A. Löwenstam, California Institute of Technology, Pasadena; Dr. Howard Hill, Los Angeles County Museum, Los Angeles; Mr. E. P. Chace, San Diego Museum of Natural History ; Mr. John Q. Burch, Los Angeles; and I am especially indebted to Mr. John E. Fitch, California Department of Fish and Game, San Pedro, for bringing me many living specimens or specimens preserved in alcohol, for study.

INTRODUCTION

It is desirable to start with a diagnosis of the family Mytilidae, though only a few species from a limited area are treated in this paper.
"Shell equivalve, generally very inequilateral with prosogyre umbones near the anterior end ; ligament elongate, deep seated, generally on nymphae, the inner resilial part typically connected with the nymphae by a calcified white ridge. Shell surface showing three areas: (1) the anterior area, the lunule, more or less distinctly circumscribed, often with radiating sculpture and dysodont teeth on the inner margin; (2) the median part, generally glossy and rarely with radiating sculpture; and (3) the posterior part often strongly sculptured or set off by a different color or by a keel. Shell ordinarily with the interior layer margaritaceous. Periostracum strong, sometimes with hairlike protuberances or with incrustations. Prodissoconch with provinculum, which persists in some smaller species. Mantle lobes united below the anal siphonal opening, branchial opening confluent with the pedal opening, posterior part of mantle edges often pigmented and furnished with papillae. Pallial line simple or with a shallow posterior concavity. Anterior adductor muscle smaller than the posterior one, sometimes obsolete in adult shells. Anterior byssusretractor small, fastened before or behind the umbones. Posterior retractor is generally confluent with the posterior adductor. Foot finger-shaped with a ventral furrow, byssal gland behind the foot functional in most of the species. Gills filibranch; ventricle embracing the rectum, monoecious. Marine; a few species in brackish or fresh water."

Generally, species of the family Mytilidae are easily recognized as members of the family by the form, sculpture, hinge, and muscle scars. Some small smooth species have a transverse striation on the dorsal hinge margin like that found in the family Philobryidae, but the shell is not pitted by the fine tubules typical of the shells of the latter family.

It is difficult to indicate satisfactory characters for the separation of the family Modiolopsidae (fossil Ordovicium to Devonian) and the family Mytilidae, which reaches back in time to Devonian. The most logical explanation is that the Mytilidae form a continuation of some branch of the Modiolopsidae. The Mytilidae have generally been divided in groups according to the outer shape of the valves. Species with terminal or nearly terminal umbones, the mytiliform species, have been placed in the genus Mytilus, while species with subterminal umbones with a distinct anterior margin, the modioliform species, have been named Modiolus or

Volsella. Many species, however, have been placed in one of these genera by some authors and in the other genus by other authors, indicating that the outer form alone is of minor systematic value. The elongate boring forms with parallel dorsal and ventral margins and subterminal umbones were placed in the genus Lithophaga, though several of these species have been considered to be Modiolus by some authors.

The species with pronounced anterior and posterior radiating sculpture separated by a smooth central part, the Musculus-group, complete the four major groups according to the shell outline and sculpture characters, which have been used for classification of the mytilids. When the genus Brachidontes is added for the species with radiating sculpture over the whole outer surface, and the three genera Idasola, Dacrydium, and Crenella for the minute more aberrant species, the list is complete for the genera used by Thiele (1935) for all recent species of the family Mytilidae. Except for the last three mentioned, there have always been difficulties in the allocation of many species to the proper genera. The differences in opinion have been caused partly by the vaguely defined or circumscribed genera and partly by the idea that all species should be placed in the few "old" genera. During the years several supraspecific categories have been named, but ordinarily they have been considered of subgeneric rank and placed within the broad limits of the larger genera, thus indicating close relationship based on external characters of questionable value. One thing seems certain, the system of the Mytilidae has not been synthetized from small clearly circumscribed units, but was built up by forcing species of apparently very different origin into large groups of superficial similarity.

The supraspecific groups should be built up and circumscribed in the same way as is used for a species concept based on different populations. As many characters as possible of the shell and animal should be studied, also the distribution and if possible the history of the species considered, when arranging them into supraspecific groups. If there are doubts as to whether a species really belongs to a group or not, it is safest and most correct to keep it apart until the right systematic position can be clearly shown. If there are doubts about the relationship of several supraspecific groups, it is safer not to press them into one large genus for the sake of simplicity, but to keep them apart until this relationship can be proved or disproved. The same idea should be applied to species. If specimens from one geographical area are supposed only doubtfully to be identical with a species from another area, it is safer to use a special specific name for them until otherwise proved. The "new" species will naturally be
placed in the supraspecific group containing the "old" species and in due time the whole group will be revised on the basis of new facts. A wrong determination or allocation is the cause of many a too hastily made hypothesis concerning zoogeography or geological history.

These ideas seem to be those of a "splitter," but sound "splitting" is far better than conservative "lumping," and can bring out new useful information of various kinds, especially on the systematics of any particular group.

When the knowledge of a family is insufficient, usually many species are described and placed in different genera. As knowledge increases, there will be fewer species but more subspecies, fewer genera but more subgenera. The breaking down of vaguely circumscribed groups is necessary for the building up of a more natural system based on increasing knowledge.

There is still another advantage with small species-groups. If a species is listed as a Mytilus or a Modiolus with its specific name from a certain region, or a certain fossiliferous layer, it tells us very little. But if the narrower group, used either as genus or subgenus, is listed, even without a specific name, it tells us much more about the characteristics of the species, the past and recent distribution of the group, and makes it possible to use the record to add new facts to the picture of the whole group. Nearly all species of mytilids, at least the littoral species, are variable in outline and color. As most of the species described hitherto are characterized mainly by these variable features, several of them are nearly impossible to recognize and many have to be considered synonymous.

The first real attempt to arrange subgeneric groups of Mytilus s. lat. and Modiolus s. lat. was made by von Ihering (1900) in his studies "On the South American species of Mytilidae." Ihering had many good ideas, but he used mainly the form and the sculpture and the more superficial characters, and used the two "old" genera in a very broad sense. The species he treated were those found on the east coast of South America and some of his interpretations certainly are wrong.

Jukes-Browne (1905) made a very valuable review of the mytilid genera. He separated Brachidontes Swainson as a generic unit, but continued to use the four "old" genera for most of the other species. His arrangement of the subgeneric groups and his diagnoses of them, however, laid a solid foundation for later studies of the family.

Lamy's (1936-37) extensive paper on the recent mytilids of the Muséum National d'Histoire Naturelle de Paris is the only modern revision of most of the species belonging to this family. He recognized
ten different genera, including Septifer Recluz, Arcoperna Conrad, and Adula Adams. Idasola is included in or made a synonym of Adula. Lamy's work is very valuable, as he has made a thorough study of the synonymy of most of the species and also mentioned species not preserved in the Paris museum. Unfortunately he did not give diagnoses of the various species and the soft parts were not taken into consideration. Some of his conclusions may be wrong and some of his names not valid, but the vast amount of knowledge presented through this paper will be of everlasting value to students.

Cox (1937) has written a very interesting paper on the Jurassic mytilids with general considerations which should be read by students working on the recent material. He describes Falcimytilus as a subgenus of Mytilus. This group consists of species with terminal umbones but without lunular grooves or teeth. Even if they should be the ancestors of Mytilus s. l., I believe Falcimytilus should be given generic rank.

Newell (1942) has treated the late Palaeozoic Mytilacea mainly on American material. His extensive discussion of the shell characters and the origin and evolution of Mytilacea is very useful and interesting. He describes the genus Promytilus and the genus Volsellina for mytiliform and modioliform late Palaeozoic mytilids respectively. Unfortunately the hinge and the muscle scars are not described.

The anatomy of several mytilids has been extensively treated by List (1902), Pelseneer (1911), and White (1937), and notes about the anatomy of different species can also be found scattered in the literature.

What are the characters which can be used in the classification of the variable mytilid species? As the major part of the mytilids have anteriorly placed umbones and are rather alike in form, this resemblance is not necessarily a criterion for the closer relationship of similar appearing species. The same form could easily have been acquired by different evolutionary lines, but it must be possible to prove or disprove this by a closer study of other characters and especially by following these characters through the fossil forms. Unfortunately very few characters are preserved in fossils and our knowledge of most of the recent species is still poor. It is, therefore, extremely difficult to tell which characters are more important than others and how the various species groups can be placed in relationship to each other. In this paper, therefore, many small groups are treated as genera; they probably will find their proper places in the system in the future.

The characters used for classification should, as far as possible, be taken from the shell and from easily visible parts of the anatomy, such as the mantle margin, foot, byssus, etc. One character which is supposed to be
of special importance is the retractor muscles of the foot and byssus. These muscles, which carry the visceral mass and can contract it against the shell and move the foot, should certainly be the most important ones for bivalves as well as for univalves. Whatever the origin of the pelecypods may have been, as a larval partial duplication from a gastropod origin or directly from the hypothetical ancestors of the mollusks, retractor muscles must have been the primary muscles of the animal. The adductors, usually the strongest muscles of an ordinary bivalve, seem to be enlarged parts of the muscles fastening the mantle to the shell. The position of the retractor of the foot compared to the posterior retractor of the byssus, and the form and placement of the anterior retractor in regard to the umbo, give valuable clues for classification (cfr. text-fig. 15).

The shell surface of most of the mytilid species is divided more or less distinctly into three areas, either by different sculpture or coloring. The anterior part, the lunule, usually is radiately ribbed, grooved, or striated, the grooves often forming teeth on the anterior margin; or the lunule is turned inwards so that the ridges form tooth-like thickened parts with corresponding grooves in the opposite valve. Sometimes a lunule is seen as a duller part of the periostracum (cfr. text-fig. 47), but often it is not separable from the rest of the shell. The median part generally is smooth and furnished with a more shining periostracum than the rest of the shell. The posterior part, usually bordered by a more or less distinct keel from the umbones to the posteroventral angle, is more heavily sculptured, has a different color, or hairy periostracum, or differs otherwise from the rest of the shell. The margins may be smooth or crenulated more or less extensively, generally in accordance with the sculpture. Several species have margins partly crenulated when young but smooth when full grown. The ligament is deep-set and a real escutcheon is not developed. The ligament is supported by a sometimes solid nymphae and the lower or ventral fibrous part, the resilial part, furnished with calcareous needles, is fastened to a ridge, here named the resilial ridge, which is white and of a quite different consistency than the rest of the valves (cfr. Pl. 5, fig. 23). This ridge continues posteriorly to the dorsal margin and forms one of the best characteristics of the family Mytilidae.

The mantle is usually separated for the entire length of the shell, from the anterior adductor to the middle of the posterior margin. An excurrent opening, a slit in the septum connecting the two mantle lobes or a more or less distinct tubuliform siphon, is separated from the free mantle lobe by a short contiguous part and a septum extending ventral-
wards and slightly into the mantle cavity. The anal siphon has smooth edges in the species which have been studied. Below the contiguous part and the septum there is a part, sometimes elongate like a siphon but open ventrally, where the mantle edges may be furnished with tentacles or papillae of varying shape, or may be smooth. This is the incurrent or branchial part of the mantle opening (cfr. text-fig. 10).

In the present paper some anatomical characters which are easily seen or which can easily be studied even in empty valves have been mentioned for most of the species. The posterior part of the mantle margin is always described and drawn from preserved animals and may vary slightly in different specimens according to the degree of contraction. The major features are, however, believed to be correctly shown in the drawings. A thorough anatomical survey of the whole animal will certainly be needed before definite conclusions as to the relations of the various supraspecific groups can be made.

Despite this weakness and certainly some wrong conclusions, it is hoped that this study of a few mytilid species will clarify some questions and be of help for future study.

NOMENCLATURE

The name of a species or a supraspecific group has only one purpose, namely, to be referable to one well circumscribed unit of animals. A scientist should know the supraspecific groups of his specialty so well that on hearing the name of a species unknown to him, he can immediately visualize it by comparison with well known species of the same group. If a supraspecific group is made very wide, however, and therefore vaguely circumscribed, the scientist has to know each species to remember the characters peculiar to it.

By a strict application of the International Rules of Nomenclature, many names, familiar for decades to scientists from some parts of the world, have to be changed. This procedure is inconvenient for present day scientists, but it will not be more difficult for future students than the use today of papers one hundred years old. There have always been different opinions about the scientific names and so numerous changes have been made during the years. Certainly these changes are of no benefit to systematics and taxonomy, and if they could be stopped by fixing names to good descriptions and illustrations, with international cooperation, it would be a great benefit to systematists and to zoologists in all branches.

The specific names used in this paper and the years of publication need some explanation. Hanley's (1842-1856) names are considered to be validated with the publication and distribution of pages 145 to 272 in 1843. Carpenter's (1855-57) names in the Mazatlan Catalogue are dated according to the printing date of each twelve pages and not from 1857. Valuable information on the Linnean names is found in Dodge (1952). The change of Mörch's genus Chloromya to Perna Retzius has to be made, according to the Rules, though Perna has been used by later authors with a quite different meaning, even as a family name. In some cases, the specific names cannot be said to be settled but are still open to doubt and may perhaps be ruled upon by the Commission. Several specific names have been considered synonyms of well known species, but with doubt, and some of them may perhaps be found to represent valid species when more material is accumulated and the type specimens have been carefully compared.
When an author has published a description in a paper written by another author, the last name only is used as reference.

No attempt has been made to give a complete list of synonyms of the genera or species, though most of the names used for the west coast species are supposed to be included and discussed as synonyms.

LIST OF SPECIFIC NAMES USED FOR WEST AMERICAN MYTILIDS

The following list comprises all names found to have been used for mytilids from the west coast of America from the Arctic Ocean in the north to the Strait of Magellan in the south. All names of species are arranged alphabetically, followed by the name of the author or by an author using the name for a west coast species, the year of publication, and in parentheses the generic name used by the describer. On the right side will be found the names supposed to be valid today. Sometimes a name is referred to with doubt and it is then preceded by a question mark. An asterisk before the specific name indicates that the species is found to the north of California only and therefore is not treated in this paper.
abbotti Lowe 1935 (Lithophaga)
adamsianus Dunker 1856 (Mytilus)
albus Molina 1782 (Mytilus)
algosus Gould 1850 (Mytilus)
americanus Orbigny 1846 (Mytilus)

[^0]angustanus Reeve 1857 non Lamarck 1819 (Mytilus)
appendiculata Tomlin 1928 (Lithophaga)
arborescents Lamy 1936 non Chemnitz 1795 (Modiolus (Amygdalum))
arciformis Dall 1909 (Modiolus)
aristatus Dillwyn 1817 (Mytilus)
ater Molina 1782 (Mytilus)
attenuata Deshayes 1836 (Modiola)
bicolor Lamarck 1819 (Mytilus)
bidens Dillwyn 1817 non Linné 1758 (Mytilus)
bifurcatus Conrad 1837 (Mytilus)
bifurcatus auct. (Mytilus)
bifurcatus Dautzenberg 1896 (Mytilus)
biradiata Hanley 1843 (Modiola)
brasiliensis Chemnitz 1795 (Mytilus)
californianus Conrad 1837 (Mytilus)
californicus Clessin 1889 (Mytilus)
californiensis Philippi 1847 (Modiola)
calyculatus Carpenter 1856 (Lithophagus)
calyculatus Hertlein and Strong 1946 (Lithophagus)
canaliculus Dall 1876, 1891 (Mytilus)
canalifera Hanley 1843 (Modiola (Lithodomus))
capax Conrad 1837 (Modiola)
carpenteri Mörch 1861 (Dactylus)
caudatus Gray 1827 (Lithophaga)
caudigera Lamarck 1819 (Modiola)
charruanus Orbigny 1846 (Mytilus)
chilensis Hupé 1854 (Mytilus)
chiloensis Reeve 1857 (Mytilus)
chorus Molina 1782 (Mytilus)
cinnamomeus Carpenter 1856 (Lithophagus)
cinnamoneus Strong and Hanna 1930 (Botula)
coarctata Carpenter 1856 (Crenella)
columbiana Dall 1897 (Crenella)

Semimytilus algosus Gould 1850
?.Lithophaga (Diberus) canalifera Hanley 1843
Anygdalum americanum n. sp.
Mytella falcata Orbigny 1846
Lithophaga (Myoforceps) aristata Dillwyn 1817
Aulacomya ater Molina 1782
Lithophaga (Labis) attenuata Deshayes 1836
Mytella guyanensis Lamarck 1819
?Aulacomya ater Molina 1782

Septifer bifurcatus Conrad 1837
Hormomya adamsiana Dunker 1856
Brachidontes purpuratus Lamarck 1819
?perhaps not American (cfr. Modiolus eiseni Strong and Hertlein 1937)
Mytella guyanensis Lamarck 1819
Mytilus californianus Conrad 1837
Mytilus californianus Conrad 1837
Adula californiensis Philippi 1847
Lithophaga (Stumpiella) calyculata Carpenter 1856
Lithophaga (Diberus) plumula Hanley 1843
Mytilus edulis subsp.
Lithophaga (Diberus) canalifera Hanley 1843
Modiolus capax Conrad 1837
Lithophaga (Myoforceps) aristata Dillwyn 1817
Lithophaga (Myoforceps) aristata Dillwyn 1817
Lithophaga (Myoforceps) aristata Dillwyn 1817
Mytella falcata Orbigny 1846
Mytilus edulis chilensis Hupé 1854
Mytilus edulis chilensis Hupé 1854
Choromytilus chorus Molina 1782
Botula fusca Gmelin 1791

Botula fusca Gmelin 1791

Gregariella coarctata Carpenter 1856
Solamen columbianum Dall 1897
coralliophagus Chemnitz 1785 (Mytilus)

* corrugatus Stimpson 1851 (Mytilus) crassa Clessin 1889 (Tichogonia) crenatus Lamarck 1819 (Mytilus) cumingi Recluz 1849 (Septifer) cumingianus Reeve 1858 (Mytilus) cuneiformis Reeve 1857 (Mytilus) dactyliformis Hupé 1854 (Mytilus) decussatus Montagu 1808 (Mytilus) decussatus Lamarck 1819 (Mytilus) demissus Dillwyn 1817 (Mytilus) denticulata Dall 1871 (Modiolaria) denticulata auct. non Dall 1871 (Botulina)
diegensis Dall 1911 (Modiolus)
diegensis Coe 1945 (Mytilus)
* discors Linné 1767 (Mytilus)
divaricata Orbigny 1853 (Nuculocardia)
dunkeri auct. non Reeve 1857 (Mytilus)
ecuadoriana Pilsbry and Olsson 1941 (Crenella)
edulis Linné 1758 (Mytilus)
eiseni Strong and Hertlein 1937 (Modiolus)
elongatus Chemnitz 1785 (Mytilus)
exaratus Philippi 1847 (Mytilus)
exilis Philippi 1847 (Mytilus)
falcatus Gould 1851 (Lithodomus)
falcatus Orbigny 1846 (Mytilus)
fischerianus Tapparone-Canefri 1874 (Mytilus)
flabellata auct. non Gould 1850 (Volsella)
fabellatus Gould 1850 (Mytilus (Modiola))
forficatus Ravenel 1861 (Lithodomus)
fornicata Carpenter 1865 (Modiola)
fornicata auct. non Carpenter (Modiola)
fuscus Gmelin 1791 (Mytilus) glomeratus Gould 1851 (Mytilus) gracilior Carpenter 1856 (Lithophagus)

Gregariella coarctata Carpenter 1856
Musculus corrugatus Stimpson 1851
not west American
Aulacomya ater Molina 1782
Septifer zeteki Hertlein and Strong 1946
Septifer zeteki Hertlein and Strong 1946
Semimytilus algosus Gould 1850
Semimytilus algosus Gould 1850
Crenella decussata Montagu 1808
Aulacomya ater Molina 1782
Arcuatula demissa Dillwyn 1817
?Gregariella denticulata Dall 1871
Gregariella chenui Recluz 1842
Adula diegensis Dall 1911
Mytilus edulis Linné 1758
Musculus discors Linné 1767
Crenella divaricata Orbigny 1853
Mytilus edulis Linné 1758
.2Crenella divaricata Orbigny 1853

Mytilus edulis Linné 1758
Modiolus eiseni Strong and Hertlein 1937
Perna perna Linné 1758
?Brachidontes purpuratus Lamarck 1819
2Brachidontes purpuratus Lamarck 1819
Adula falcata Gould 1851
Mytella falcata Orbigny 1846
Mytilus edulis chilensis Hupé 1854
Modiolus neglectus n. sp.
Modiolus rectus Conrad 1837
Lithophaga (Myoforceps) aristata Dillwyn 1817
Modiolus fornicatus Carpenter 1865
Modiolus sacculifer Berry 1953

Botula fusca Gmelin 1791
Mytilus edulis Linné 1758
Lithophaga (Myoforceps) aristata Dillwyn 1817
Lithophaga (Diberus) plumula Hanley 1843
granulatus Hanley 1843 (Mytilus)
grayanus auct. non Dunker 1853
(Mytilus)
*grisea Dall 1907 (Crenella)
guyanensis Lamarck 1819 (Modiola)
hamatus Say 1822 (Mytilus)
houstonius Bartsch and Rehder 1939
(Brachidontes)
hupeanus Rochebrune et Mabille 1889 (Mytilus)
*impressa Dall 1907 (Modiolaria)
inca Orbigny 1846 (Lithodomus)
inflata Carpenter 1864 (?Crenella)
infumatus Rochebrune et Mabille 1889
(Mytilus)
kelseyi Hertlein and Strong 1946
(Lithophaga)
labiata Carpenter MS (Modiola)
*laevigata Gray 1824 (Modiola)
*laevis Beck 1851 (Modiolaria)
latissimus Carpenter 1857 (Mytilus edulis var.)
latus Lamarck 1819 (Mytilus)
*leana Dall 1897 (Crenella)
magellanica Retzius 1788 (Perna) magellanicus Chemnitz 1785 (Mytilus)
magellanicus Röding 1798 (Mytilus)
*marmorata auct.-? Forbes 1838
(Mytilus (Modiola))
megas Dall 1902 (Crenella)
modiolus Linné 1758 (Mytilus)
multiformis Carpenter 1855 (Mytilus)
mutabilis Carpenter 1856 (Modiola)
mutabilis auct. non Carpenter 1856
(Modiola)
*nigra Gray 1824 (Modiola)
nitens auct. non Carpenter 1855
(Mytilus)
nonuranus Pilsbry and Olsson 1935
(Modiolus)
*obesus Dall 1916 (Musculus) obesus Reeve 1858 (Mytilus) oblongus Clessin 1889 (Mytilus)
obsoletus Dall 1916 (Septifer)
olivaceus Dall 1916 (Musculus)

Hormomya granulata Hanley 1843
Mytilus edulis Linné 1758
Crenella grisea Dall 1907
Mytella guyanensis Lamarck 1819
Ischadium recurvus Rafinesque 1820
Brachidontes houstonius Bartsch and
Rehder 1939
Mytilus edulis chilensis Hupé 1854
Musculus impressus Dall 1907
Lithophaga (Labis) attenuata Deshayes 1836
?Crenella divaricata Orbigny 1853
Mytilus edulis chilensis Hupé 1854

Lithophaga (Diberus) subula Reeve

 1857Modiolus sacculifer Berry 1953
Musculus laevigatus Gray 1824
Musculus laevis Beck 1851
Mytilus edulis Linné 1758
Choromytilus chorus Molina 1782
Crenella leana Dall 1897
Perna perna Linné 1758
Aulacomya ater Molina 1782
Perna perna Linné 1758
?Lanistina sp.
2Solamen columbianum Dall 1897
Modiolus modiolus Linné 1758
Brachidontes multiformis Carpenter 1855
Mytella guyanensis Lamarck 1819
Mytella falcata Orbigny 1846
Musculus niger Gray 1824
Mytella falcata Orbigny 1846
Semimytilus algosus Gould 1850
Musculus obesus Dall 1916
Mytilus edulis chilensis Hupé 1854
Aulacomya ater Molina 1782
Septifer bifurcatus Conrad 1837
Musculus olivaceus Dall 1916
opifex auct. non Say 1825 (Modiola) orbignyanus Hupé 1854 (Mytilus)
*pacificum Dall 1916 (Dacrydium) pallidulus Dall 1916 (Modiolus) palliopunctatus Carpenter 1855 (Mytilus)
patagonicus Clessin 1889 (Mytilus)
patagonicus Reeve 1857 (Mytilus)
patagonicus auct. non Orbigny 1846
(Mytilus)
pellucidus Pennant 1777 (Mytilus)
perna Linné 1758 (Mya)
peruvianus Orbigny 1846 (Lithodomus)
*phenax Dall 1915 (Musculus)
pilosus Reeve 1858, Stempell 1902 (Mytilus)
planulatus Lamarck 1819 (Mytilus)
playasensis Pilsbry and Olsson 1935 (Modiolus (Brachidontes))
plicatula Lamarck 1819 (Modiola)
plumula Hanley 1843 (Modiola (Lithodomus))
plumula Hertlein and Strong 1946 (Lithophaga (Diberus))
politus Dall 1916 (Modiolus)
protractus Dall 1916 (Musculus)
puntarenensis Pilsbry and Lowe 1932 (Mytilus (Hormomya))
purpurata Lamarck 1819 (Modiola)
pyriformis Gould 1850 (Mytilus)
recta Conrad 1837 (Modiola)
recta auct. non Conrad 1837 (Modiolus)
recurvus Rafinesque 1820 (Mytilus)
rotundata Dall 1916 (Crenella)
rugiferus Dunker in Carpenter 1856 (Lithophagus)
sacculifer Berry 1953 (Volsella)
salvadorica Hertlein and Strong 1946 (Volsella)
semicostata Conrad 1837 (Modiola)
semifusca Sowerby 1830 (Modiola)
semilaevis Menke 1849 (Modiola)
*seminuda Dall 1897 (Modiolaria)
senhausi Reeve 1857 (Modiola)
similis Clessin 1889 (Mytilus)
sinuosa King 1831 (Modiola)

Gregariella chenui Recluz 1842
Aulacomya ater Molina 1782
Dacrydium pacificum Dall 1916
Amygdalum pallidulum Dall 1916
Choromytilus palliopunctatus Carpenter 1855
Semimytilus algosus Gould 1850
Semimytilus algosus Gould 1850
Mytilus edulis chilensis Hupé 1854
Mytilus edulis Linné 1758
Perna perna Linné 1758
Lithophaga (Labis) peruviana Orbigny 1846
Musculus phenax Dall 1915
?Hormomya granulata Hanley 1843
Mytilus edulis Linné 1758
Brachidontes playasensis Pilsbry and Olsson 1935
Arcuatula demissa Dillwyn 1817
Lithophaga (Diberus) plumula Hanley 1843
Lithophaga (Diberus) plumula Hanley 1843
Amygdalum pallidulum Dall 1916
Musculus protractus Dall 1916
Brachidontes puntarenensis Pilsbry and Lowe 1932
Brachidontes purpuratus Lamarck 1819
Aulacomya ater Molina 1782
Modiolus rectus Conrad 1837
Modiolus neglectus n. sp.
Ischadium recurvus Rafinesque 1820
?Solamen columbianum Dall 1897
?Lithophaga (Leiosolenus) spatiosa Carpenter 1856
Modiolus sacculifer Berry 1953
Lioberus salvadoricus Hertlein and Strong 1946
Arcuatula demissa Dillwyn 1817
Mytella guyanensis Lamarck 1819
?Brachidontes multiformis Carpenter 1855
Musculus seminudus Dall 1897
Musculus senhousei Benson 1842
Semimytilus algosus Gould 1850
Mytella guyanensis Lamarck 1819

```
soleniformis Orbigny 1846 (Mytilus)
spatiosus Carpenter 1856 (Leiosolenus)
spatula Menke 1849 (Mytilus)
speciosa Reeve 1857 (Modiola)
splendens Dunker 1856 (Mytilus)
splendida Dunker 1856 (Volsella)
stearnsi Pilsbry and Raymond 1898
    (Mytilus)
strigatus Hanley 1843 (Mytilus)
stylina Carpenter 1864 (Adula)
subfuscata Clessin 1889 (Modiola)
*substriata Gray 1824 (Modiola)
subula Reeve 1857 (Lithodomus)
*taylori Dall }1897\mathrm{ (Modiolaria)
trifurcatus Dunker 1853 (Mytilus)
trossulus Gould 1850 (Mytilus)
tumbezensis Pilsbry and Olsson 1935
    (Modiolus)
tumidior Carpenter 1856 (Lithophagus)
tumidior Carpenter 1856 (Lithophagus)
ungulatus Lamarck }1819\mathrm{ (Mytilus)
*vernicosa Middendorf }184
    (Modiolaria)
violaceus Clessin 1889 (Mytilus)
zeteki Hertlein and Strong }194
    (Septifer)
```

soleniformis Orbigny 1846 (Mytilus) spatiosus Carpenter 1856 (Leiosolenus)
spatula Menke 1849 (Mytilus) speciosa Reeve 1857 (Modiola) splendens Dunker 1856 (Mytilus) splendida Dunker 1856 (Volsella) stearnsi Pilsbry and Raymond 1898
(Mytilus)
strigatus Hanley 1843 (Mytilus)
stylina Carpenter 1864 (Adula)
subfuscata Clessin 1889 (Modiola)
*substriata Gray 1824 (Modiola) subula Reeve 1857 (Lithodomus)
*taylori Dall 1897 (Modiolaria) trifurcatus Dunker 1853 (Mytilus)
trossulus Gould 1850 (Mytilus)
tumbezensis Pilsbry and Olsson 1935
(Modiolus)
tumidior Carpenter 1856 (Lithophagus)
tumidior Carpenter 1856 (Lithophagus)
ungulatus Lamarck 1819 (Mytilus)
*vernicosa Middendorf 1849
(Modiolaria)
violaceus Clessin 1889 (Mytilus)
zeteki Hertlein and Strong 1946
(Septifer)

Adula soleniformis Orbigny 1846
Lithophaga (Leiosolenus) spatiosa
Carpenter 1856
?Modiolus capax Conrad 1837
Mytella speciosa Reeve 1857
?Modiolus capax Conrad 1837
Semimytilus algosus Gould 1850
Hormomya adamsiana Dunker 1856
2Mytella falcata Orbigny 1846
Adula californiensis Philippi 1847
?Modiolus capax Conrad 1837 or
Mytella guyanensis Lamarck 1819
Musculus substriatus Gray 1824
Lithophaga (Diberus) subula Reeve 1857
Musculus taylori Dall 1897
Septifer bifurcatus Conrad 1837
Mytilus edulis Linné 1758
Mytella speciosa Reeve 1857
Lithophaga (Myoforceps) aristata Dillwyn 1817
Lithophaga (Diberus) plumula Hanley 1843
Choromytilus chorus Molina 1782
Musculus vernicosus Middendorf 1849
Mytilus edulis chilensis Hupé 1854
Septifer zeteki Hertlein and Strong 1946

THE "MYTILUS"-GROUP

Mytiliform species were recorded very early in the history of the family. Newell (1942) has placed the Paleozoic species in the genus Promytilus with species of the same form as the recent ones. Nothing is known or published on the hinge characters or the muscle scars. The Jurassic genus Falcimytilus Cox (1937) is described as being without anterior teeth, otherwise very like the recent forms. Several other supraspecific groups are established for fossil species, but so far as I know without detailed characters of the hinge or the muscle scars. It is therefore at present impossible to establish pedigrees or to trace the relationship of the species.

The mytilid form seems to be successful for species living in colonies fastened with a byssus to rocks or seaweeds. In the pointed anterior end is only a small space for an anterior adductor which, therefore, has a tendency to become reduced. To obtain a rapid and complete closing of the valves, the posterior adductor is larger and the posterior retractors of the byssus are strong, so the shell can be pressed against the support. Strong retractor muscles need space for the adherence to the shell and are therefore found in a long flattened band before the adductor or separated into two strings. Usually the narrow anterior margin is furnished with tooth-like folds formed by the radiating sculpture of the lunule. The sculpture seems to be the remains of a radiating sculpture in the ancestors, which perhaps were like modern species of the Brachidontes or the Hormomya-group. In small species, e. g., of Mytilus s. s., the teeth are not interlocking but are separated by the periostracum bent inwards in both valves. In other groups where the lunule is more or less completely bent inwards, the teeth, or more correctly the folds, interlock.

The posterior part of the mantle margin, the branchial opening, is furnished with tentacles or papillae of various forms usable as filtering and sensory organs. Nearly all mytiliform species seem to have such papillae. The dorsal or anal opening is sometimes in the form of a short siphon, sometimes an opening in the septum connecting the two mantle margins.

As stated before, all mytiliform species have been included in the genus Mytilus s. l., though representing different subgenera or sections. The differences which can be seen inside the valves or in the soft parts, are in reality greater than those used for the separation of genera or even subfamilies in other pelecypod families. In this paper two new generic names are introduced for species differing considerably from Mytilus s. s., one of which is not represented in the recent fauna of west America. The grouping together of the five genera of mainly smooth mytiliform species seems at present to be unwise. Many students and especially the palaeontologists certainly will prefer to use Mytilus for all these species on the basis of the outer form, but in that case Aulacomya has also to be included. That such a procedure will clarify and simplify the relationship of these species seems questionable. The heading of this section does not indicate a relationship of mytiliform species a priori or that these genera are more closely related to each other than to other genera of the family, but only that they have been supposed to constitute a uniform group.

SYSTEMATICAL PART

KEY TO GENERA OF MYTILIDS BASED ON WEST AMERICAN SPECIES

1. Resilial ridge pitted 2
Resilial ridge compact 4
2. No anterior adductor, posterior retractor scars widely sepa- rated Perna
Anterior adductor present 3
3. Anterior retractor scar elongate, posterior retractors continu- ous, several small teeth present Mytilus
Anterior retractor scar round, posterior retractors separated, anterior margin with or without teeth; more or less green colored Mytella
4. Lunule with radial sculpture and anterior margin with teeth or crenulations 5
Lunule smooth, anterior margin without teeth or crenulations, shell smooth or with irregular sculpture 18
5. Shell with concentric or irregular sculpture, or smooth 6
Shell with radial sculpture though sometimes obsolete 9
6. Anterior retractor before umbo, scars of siphonal muscles vis- ible; shell elongate lithophagiform or modioliform, smooth or with irregular sculpture Adula
Anterior retractor elongate, behind umbo, shell mytiliform 7
7. 1 to 3 distinct teeth or folds 8
No real teeth, lunule bordered by a faint line Semimytilus
8. Anterior adductor strong, shell margin minutely crenulated Crenomytilus
No anterior adductor, shell margin smooth Choromytilus
9. Strong tooth-like crenulations behind the ligament 10
Dorsal margin behind ligament smooth or crenulated like the rest of the margins 12
10. Anterior adductor placed on a septum in each valve Septifer
No anterior septum 11
11. Umbones subterminal, anterior hinge margin bent in an angle, radial sculpture on ventral part simple or regularly bifur- cating, posterior retractors fastened to dorsal part of poste- rior adductor Brachidontes
Umbones usually terminal, radial sculpture on ventral part unilaterally bifurcate, posterior retractors fastened below the dorsal part of the posterior adductor Hormomya
12. Mytiliform species with 1 to 3 tooth-like ridges or small teeth, anterior adductor obsolete or missing 13
Anterior margin crenulated, anterior adductor distinct 14
13. Margins smooth or with folds in young specimens, anterior retractor elongate, hinge with 1 to 3 tooth-like folds . Aulacomya
Margins crenulate, anterior retractor round, posterior re- tractors broadly united with the posterior adductor, hinge with several small teeth14. Radial sculpture of equal strength over the whole surface,smaller greyish or yellowish-white species with thin perio-stracum .15
Radial sculpture weaker or absent on the median part of the shell, periostracum strong 16
14. Radial ribs relatively strong, a crenulated tooth-like process below umbo, ligament deep-setRadial striations numerous and fine, no tooth-like processbelow umbo in adult shells, ligament more marginal . . Solamen
15. Radial sculpture distinct though weaker in the median part of the shell, anterior retractor in the umbonal cavity and a small but distinct scar between the anterior adductor and retractor Arcuatula
No radial sculpture on the median part of the shell, anterior retractor before umbo 17
16. Umbonal keel low, periostracum without hairlike protuber- ances Musculus
Umbonal keel pronounced, periostracum with long hairlike protuberances on the keel Gregariella
17. Ligament short below umbo, small white or hyaline species with thin shiny periostracum 19
Ligament elongate, larger species with strong periostracum 20
18. Hinge without grooved teeth on the sides of the chondro- phore, anterior margin thickenedHinge with two grooved teeth with a small median chondro-phore, anterior margin not thickened.
Quendreda
19. Shell elongate, lithophagiform with parallel dorsal and ventral margins, periostracum strong with irregular sculpture or chalky or filthy incrustations, anterior retractor before umbo 21

$$
\begin{aligned}
& \text { Shell relatively higher, periostracum smooth or with hairlike } \\
& \text { protuberances, anterior retractor usually behind umbo . . . } 22
\end{aligned}
$$

21. Shell coated with chalky incrustations especially on the post- erodorsal part; margins smooth Lithophaga
Shell with irregular sculpture or a filthy incrustation on the posterodorsal part, dorsal margin sometimes crenulated . Adula
22. Dorsal margin crenulated above and behind the ligament, anterior adductor placed on the margin below umbo . . Botula
Dorsal margin smooth, anterior adductor not placed on the margin 23
23. Shell mytiliform, lunule bordered by a faint line, anterior retractor elongate, behind umbo Semimytilus
Shell with broader rounded anterior margin, anterior re- tractor rounded 24
24. Anterior retractor in or behind umbo 25
Anterior retractor before umbo 26
25. Greyish or yellowish-white, usually spotted, species with shiny periostracum ; first posterior retractor small, widely sepa- rated from the hinder one Amygdalum
Brownish species with thick periostracum often with hairs, posterior retractors continuous Modiolus
26. No furrow separating the posterodorsal area from the rest of the shell. Lioberus
A furrow from umbo to the posterior part of the ventralmargin is present Musculus
Genus MYTILUS Linné 1758
Mytilus Linné, Systema Naturae, ed. 10, 1758, p. 704.Syn.: Eumytilus Ihering 1900.Type of genus: Mytilus edulis Linné 1758 (subsequent designation byGray 1847).

Remarks: This Linnean genus, which originally contained several very unlike shells now referred to different families, is here restricted to those species which have the features characteristic of Mytilus edulis Linné. These are mainly the anterior position of the umbones, the dysodont teeth on the short anterior margin formed by the radial ridges of the lunule, a small anterior adductor, elongate scars of the anterior retractor well behind the umbones, continuous scars of the large posterior adductor and retractors, and the distinctly pitted resilial ridge which fastens the ligament to the nymphae. The posterior part of the mantle margins are furnished with tentacles or papillae.

The species of Mytilus s. s. are extremely variable in regard to outline, color, and the thickness of the valves, and consequently many names have been applied to the different forms.

Mytilus s.s. seems to be of a relatively recent origin, as no records of species which certainly belong to the restricted genus are older than Pliocene. The recent distribution of M. edulis suggests, however, that this species must be rather old. Three or four species may be recognized, viz., Mytilus edulis Linné 1758, with geographical subspecies; Mytilus californianus Conrad 1837; Mytilus crassitesta Lischke 1868 (Japan), and perhaps Mytilus giganteus Nordmann 1862.

The two west American species are generally easily separated:
Shell smooth, anterior adductor placed along the anteroventral margin edulis Linné
Shell with radial ribs, anterior adductor placed more
anteriorly californianus Conrad

Mytilus edulis Linné 1758

Pl. 1, figs. 1-2 ; text-figs. 1, 2, 10, 11
Mytilus edulis Linné, Systema Naturae, ed. 10, 1758, p. 705. Syn.: Mytilus pellucidus Pennant 1777.

Mytilus angustanus Lamarck 1819.
Mytilus galloprovincialis Lamarck 1819.
Mytilus planulatus Lamarck 1819.
Mytilus platensis Orbigny 1846.
Mytilus trossulus Gould 1850.
Mytilus glomeratus Gould 1851.
Mytilus chilensis Hupé 1854.
Mytilus edulis var. latissimus Carpenter 1857.
Mytilus grunerianus Reeve 1857.
Mytilus chiloensis Reeve 1857.
Mytilus obesus Reeve 1858.
Mytilus fischerianus Tapparone-Canefri 1874.
Mytilus canaliculus Dall 1876, 1891 (non Martyn 1784).
Mytilus infumatus Rochebrune et Mabille 1889.
Mytilus hupeanus Rochebrune et Mabille 1889.
Mytilus septentrionalis Clessin 1889.
Mytilus violaceus Clessin 1889 (non Lamarck 1819).
Mytilus (Eumytilus) patagonicus Jukes-Browne 1905 (non Hanley 1843, Orbigny 1846).

Mytilus edulis patagonicus Ihering 1907
 (non Hanley 1843, Orbigny 1846).

Mytilus desolationis Lamy 1936.
Mytilus kerguelensis Fletcher 1938 (non Smith 1885).
Mytilus dunkeri cfr. Bartsch 1943 (non Reeve 1857).
Mytilus edulis diegensis Coe 1945.
Mytilus patagonicus Carcelles 1950, 1951
(non Hanley 1843, Orbigny 1846).
Holotype: Linnean Society ?
Type locality: North Atlantic.
Remarks: This list of synonyms is not complete, but is supposed to contain all names used for this species from the west coast of America, as well as those considered to constitute geographical subspecies. Usually Mytilus edulis has been used for specimens from the northern parts of the Atlantic and Pacific Oceans, while specimens from the west coast of South America have been considered to constitute a subspecific unit M. edulis chilensis Hupé, and those from the east coast of South America another unit M. edulis platensis Orbigny. Specimens from the Kerguelen Islands were named M. desolationis by Lamy (M. kerguelensis Fletcher), while those from Australia and New Zealand are known as M. edulis planulatus Lamarck. The higher, flatter forms with very small anterior adductor are named M. galloprovincialis Lamarck in the Mediterranean and M. diegensis Coe in California. Though there might be distinctive forms living in the neighborhood of each other, these forms seem to occur in all areas where M. edulis is living. They may be ecological forms or genetically determined, but at present it seems impossible to circumscribe a group of specimens from one locality so well that they can be recognized in a large collection from many localities. On the other hand, one would be inclined to suppose that the geographically widely separated populations are evolving or have acquired some characters, though minute, in shell, animal, or in their biology, which might separate them from other populations. It seems, therefore, to be advisable to use special names for some of the geographically separated populations as subspecies, even if no morphological characters for their separation can be indicated.

Mytilus edulis is often considered to be a cosmopolite, but that is wrong. It has a definite distributional pattern comparable to that found in Choromytilus and Aulacomya, showing that these genera have had at least partly the same history in, geologically speaking, relatively recent times.

Fig. 1. Mytilus edulis Linné. Yaquina Bay, Oregon. Common thick-shelled form.
Fig. 2. Mytilus edulis Linné. Mission Bay, San Diego. High, thinshelled form with small anterior adductor (diegensis Coe).
Fig. 3. Mytilus californianus Conrad. San Pedro. Note the placement of the anterior adductor.
Fig. 4. Choromytilus palliopunctatus (Carpenter). Salina Cruz, Oaxaca, Mexico. Anterior retractor placed behind the middle of the ligament; no anterior adductor.

The Californian form named M. diegensis by Coe, by some thought to be M. grayanus Dunker=M. dunkeri Reeve introduced from Japan, is a high flat form with a very small anterior adductor and sometimes with a greenish shine in the periostracum. The posterior part of the mantle margin has small papillae and is unpigmented in many specimens, and thus seems to constitute a subspecies. However a large amount of material was found intermediate between the lower more inflated form with mantle margins more or less pigmented, and forms with different sized tentacles. Sometimes the color of the shell is brown, not blue as usual. Such specimens seem to have been taken in deeper water or in places where the light is weak. Where many specimens live crowded together under unsuitable conditions, the specimens are small, short, and often of an unusual form (M. glomeratus Gould).
Occurrence: M. edulis is usually found in the intertidal zone attached to stones, rocks, or pilings. Sometimes specimens live in deeper water, at least down to 10 to 20 fms . Fresh shells were found on the beach at San Felipe, Gulf of California, but apparently they were bait brought there by fishermen.
Distribution: North America's west coast from the Arctic Ocean to Cabo San Lucas, Baja California; the west coast of South America (chilensis Hupé), Valparaiso to the Strait of Magellan ; the east coast of South America (platensis Orbigny), north to Brazil; the east coast of North America from Greenland to North Carolina (Cuba?) ; Europe from the White Sea to the Mediterranean, and northern Africa; Kerguelen Island (desolationis Lamy) ; Australia and New Zealand (planulatus Lamarck).

Mytilus californianus Conrad 1837

Plate 1, figs. 3-4; text-figs. 3, 12
Mytilus californianus Conrad, Jour. Acad. Nat. Sci. Phila., vol. 7, 1837, p. 242, Pl. 18, fig. 15.

Syn.: Mytilus californicus Clessin 1889.
Holotype: ?
Type loc.: San Diego, California.
Remarks: This species is usually easy to recognize by the radiating ribs. In shape, however, it varies from the broad bay form to the elongate irregular and worn form living in the surf. Small specimens may sometimes be difficult to separate from small specimens of Mytilus edulis, but the placement of the anterior adductor is different. In M. californianus,
the scar of the anterior adductor is placed between the dorsal and ventral margin in the anterior angle. The mantle margins are furnished with large tentacles arranged in groups, and are generally heavily pigmented. Large specimens are recorded to a length of nine inches.
Occurrence: Mytilus californianus is very common, especially along the more exposed coast in the intertidal zone. Sometimes found living in deeper water to 25 fms (Berry, 1954).
Distribution: Aleutian Islands south to Isla Socorro, Mexico.

Genus CRENOMYTILUS new genus

Plate 2, figs. 9-10; text-fig. 7
Syn.: Mytiloconcha auct. non Conrad 1862.
Diagnosis: Shell mytiliform with terminal umbones, lunule grooved and incurved, forming two to three large teeth usually obsolete in old specimens, as there is a pronounced tendency to a growth in thickness by depositing new shell material on the inside of the valves. Margins, especially the anteroventral one, finely crenulated, the crenulations apparently formed as a result of the building up of the crystals in the valves; shell obliquely striated, especially distinct on the ventral surface. Resilial ridge compact; anterior adductor strong, showing a distinct thickened scar; anterior retractor scar elongate behind umbo; posterior adductor and retractor scars continuous. The soft parts have not been studied.
Type of genus: Mytilus grayanus Dunker 1853.
This group of mytiliform species is distinguished from similar forms by the compact resilial ridge, the strong anterior adductor, and the fine crenulation of the margins. No recent species is recorded from America, but during the Tertiary this group seems to have been widely distributed along the west coast of North America. These species have usually been listed as Mytiloconcha Conrad, which, however, seems to be based on an old, thick specimen of Myoconcha incurva Conrad without anterior adductor and apparently belonging to Perna Retzius.

The west coast Tertiary species are: Crenomytilus mathewsoni (Gabb) 1866 (Oligocene) ; C. trampasensis (Clark) 1915 (Miocene); C. coalingensis (Arnold) 1910 (Upper Miocene) ; C. kewi (Nomland) 1916 (Pliocene) ; and perhaps also other species listed as Mytilus. The only recent species seems to be C. grayanus (Dunker) $1853=$. dunkeri Reeve 1857, from the Kuril Islands south to the Philippine Islands. The name Mytilus dunkeri has erroneously been used for the form of Mytilus named diegensis by Coe (1945).

Fig. 5. Choromytilus chorus (Molina). Chile. No anterior adductor, anterior retractor distant from umbo.
Fig. 6. Perna perna (Linné). Magellan Straits (Videnskabsselskabets Museum, Trondheim, Norway). Posterior retractors widely separated.
Fig. 7. Crenomytilus grayanus (Dunker). Japan (San Diego Museum). Strong anterior adductor.
Fig. 8. Semimytilus algosus (Gould). North Chincha Island, Peru. Anterior retractor shows two scars.
Fig. 9. Semimytilus algosus (Gould). North Chincha Island, Peru. Anterior part seen from the ventral side, showing the fold on the lunule.

Genus SEMIMYTILUS new genus

Diagnosis: Shell mytiliform with nearly terminal umbones ; lunule small and circumscribed by a fine line; anterior margin without teeth, slightly bent outward and usually constricted to form a rounded anterior margin. Anterior adductor present, posterior adductors and retractors continuous, anterior retractor fastened below the ligament behind the umbo, elongate, narrow, separated in the middle; resilial ridge compact. Pallial margin with groups of papillae.
Type of genus: Mytilus algosus Gould 1850.
This genus differs from Mytilus s. s. and Perna by the compact resilial ridge, from Choromytilus by the presence of an anterior adductor, and from all by the lack of teeth on the lunular margin. The fine incised line which circumscribes the lunule and constricts the anterior margin is of the same type as the two or more lines found on the lunule of species of the related genera and there forming teeth on the anterior margin.

So far as is known, Mytilus algosus is the only species which is referable to this group. There are some small Pacific species which perhaps are closely related, but a thorough study of preserved specimens is necessary before any other species can be referred to Semimytilus.

If no other species should be referable to Semimytilus, this group is confined to the west coast of South America.

Semimytilus algosus (Gould) 1850
Plate 4, fig. 17 ; text-figs. 8, 9, 14, 15, 16
Mytilus algosus Gould, Proc. Boston Soc. Nat. Hist., vol. 3, 1850, p. 344 ; United States Exploring Expedition, vol. 12, 1852, p. 450, Atlas, 1856, Pl. 41, figs. 566, 566a.
Syn.: Mytilus dactyliformis Hupé 1854.
Mytilus splendens Dunker 1856, non Reeve 1857.
Mytilus cuneiformis Reeve 1857, non Hanley 1843.
Mytilus angustanus Reeve 1857 (Clessin 1889), non Lamarck 1819.

Mytilus patagonicus Clessin 1889, non Orbigny 1846.
Mytilus similis Clessin 1889.
Modiolus nonuranus Pilsbry and Olsson 1935.
Holotype: U. S. National Museum?
Type loc.: Fiji Islands (!) wrong locality. Valparaiso, Chile, is here designated as the type locality.
Remarks: Unfortunately Gould gave "Feejee Islands" as the locality where this species was obtained by the Exploring Expedition. Several
localities from this expedition are wrong, as the material had been handled by incompetent nonscientific personnel. The excellent figure in the plates from the Expedition leaves no doubt that this species is the rather common South American species later recorded under several different names. The Exploring Expedition visited Valparaiso, Chile, and Callao, Peru. It therefore seems safe to make Valparaiso the type locality.

There has been much confusion about this common and variable species and different authors have described the varieties several times. Some names have been used in another sense than the describer intended and all these names have been listed in various ways by later authors. As far as it can be determined after a study of many collections, there is only one species of this group along the coasts of South America. Sometimes the specimens are elongated, sometimes short and more inflated, and small samples of each form may easily be considered to represent two different species.

The main characters separating S. algosus from other related species are those as given under the genus Semimytilus. The figures of the shell with muscle scars show that the anterior margin grows backward and often ends in a toothlike point. The fold bordering the more dull lunule is sometimes difficult to see, but with some experience this species can be determined with the valves closed. Young specimens may be very like young Choromytilus palliopunctatus, but the form and placement of the anterior retractor easily separate the two species.

The posterior part of the mantle is furnished with branched tentacles and papillae of a very distinct form. The dorsal siphon is long and protruding, with smooth margins; the septum is short. The posterior parts

Fig. 10. Mytilus edulis Linné. Yaquina Bay, Oregon. Common form, posterior part of mantle. A.P.- posterior adductor; D.O.- Dorsal or anal opening; S.- septum connecting both mantle flaps in the branchial opening.
Fig. 11. Mytilus edulis Linné. Newport Harbor. High form (diegensis Coe). Posterior part of mantle with small papillae.
Fig. 12. Mytilus californianus Conrad. San Pedro. Posterior part of mantle. a. Enlarged papillae.
Fig. 13. Choromytilus palliopunctatus (Carpenter). Salina Cruz, Oaxaca, Mexico. Posterior part of mantle. a. Enlarged papillae.
Fig. 14. Semintytilus algosus (Gould). North Chincha Island, Peru. Posterior part of mantle. a. Enlarged papillae from the inside. b. Enlarged papillae from the outside.
Fig. 15. Semimytilus algosus (Gould). North Chincha Island, Peru. A.R.B. - anterior retractor byssi, here divided into two branches; B. - byssus; F.R.-foot retractor; P. R. B. posterior retractor byssi.

Fig. 16. Semimytilus algosus (Gould). Distribution according to samples from various sources.
usually have a dark brown pigment. The foot retractor is weak compared to the strong byssal retractors, of which the anterior has two separate branches. The byssus consists of fine yellowish threads grown out from a central stem.
Occurrence: S. algosus is found from the shore down to a few fathoms. Smaller specimens are often fastened to the holdfasts of Macrocystis and other algae, but usually they seem to be found along rocky shores. Some samples consist of many specimens fastened together by their byssal threads.
Distribution: According to samples studied in various collections, the northernmost locality where S. algosus is found is Manta, Ecuador, and the southernmost is Tumbes, Chile. It is also recorded from the Juan Fernandez Islands (Hassler Expedition).

Genus PERNA Retzius 1788

Perna Retzius, Dissertatio historico-naturalis nova Testaceorum genera, 1788, p. 20.
Syn.: Chloromya Mörch 1853.
Mytiloconcha Conrad 1862.
Type of genus: Perna magellanica Retzius 1788=Mya perna Linné 1758. (I have been unable to find an earlier designation; therefore Perna magellanica Retzius 1788 is here designated the type of genus Perna Retzius 1788.)
Remarks: Mörch (1853) himself states that his Chloromya is like Perna Retzius non Adanson. It is therefore remarkable that Chloromya has been in use for so many years. Unfortunately Perna has been used by Bruguière 1792 ($=$ Pedalion) and by H. and A. Adams 1858 as of Adanson (=Modiolus). Mytiloconcha Conrad was erected for his Myoconcha incurva which has a very thick anterior part due to the internal increase of the shell. The type species has no anterior adductor, but a pitted resilial ridge, and shows no special difference from old specimens of Perna.

This genus is characterized by the pitted resilial ridge, the anterior position of the foot retractor, and the missing anterior adductor. The shell is more margaritaceous than the other Mytilus-like genera and sometimes shows a beautiful green color.

Perna perna (Linné) 1758

Text-fig. 6
Mya perna Linné, Systema Naturae, ed. 10, 1758, p. 671.
Syn.: Mytilus elongatus Chemnitz 1785.
Perna magellanica Retzius 1788.
Mytilus magellanicus Röding 1798.

Holotype: ?

Type loc.: Strait of Magellan.
Remarks: Linné described this species as a $M y a$. His short description is followed by a reference to "Argenv. conch. t. 25, f. N" and the habitat is "in freto Magellanico." Argenville, Pl. 25, fig. N, represents an elongate mytilid and on p. 331 sub. fig. N, he says: "La Moule qu'on voit à la lettre N, est d'une très beau violet mêlé de Pourpre \& d'Agathe, c'est la grand Moule de Magellan." There is no doubt the Linnean name perna has to be used for the South American species. Ihering (1900) uses Mytilus perna Linné for the Brazilian species (Mytilus achatinus Lamarck, Lamy 1936); which perhaps may be conspecific with the Magellanian form. In fact, Lamy (1936) reports M. achatinus from the Strait of Magellan and M. elongatus Chemnitz from Brazil. Carcelles (1950, 1951) does not mention this species in his lists.

Occurrence: No information available.
Distribution: Strait of Magellan north to ? on the Atlantic coast of South America.

Genus CHOROMYTILUS Soot-Ryen 1952

Choromytilus Soot-Ryen, Rev. Soc. Malacolog. "Carlos de la Torre," vol. 8, no. 3, 1952, p. 121.
Type of genus: Mytilus chorus Molina 1782 (orig.).
Remarks: This group was described mainly because the resilial ridge is compact and this makes it easily separable from Perna. There are, however, other characters which separate these species from related groups. The posterior byssus and foot retractors are continuous though sometimes only narrowly connected; the anterior retractor is strong, very strong and elongated in C. palliopunctatus, and fastened to the valves approximately below the middle of the ligament. The tentacles on the posterior mantle margin are large and branched, and the valves are usually punctate inside the ventral half. The anterior adductor, wanting in larger specimens, may be seen in young specimens. The byssus is very strong, branching from a central stem. The lunule is bent inwards, forming one central tooth in the right valve corresponding to a groove in the left valve.

Species belonging to Choromytilus are so far reported from the American west coast from the Gulf of California south to the Strait of Magellan; South Africa, and the Kerguelen Islands.
Key to the west American species:
Shell regular, not inflated, anterior retractor oval, before the middle of the ligament chorus (Molina) Shell irregular, inflated, anterior retractor large, reaching forward from behind the middle of the ligament
palliopunctatus
(Carpenter)

Choromytilus chorus (Molina) 1782

Plate 2, figs. 7-8; text-fig. 5
Mytilus chorus Molina, Saggio sulla Storia Naturale del Chili, 1782, p. 202.

Syn.: Mytilus albus Molina 1782.
Mytilus latus Lamarck 1819, non Linné 1758.
Mytilus ungulatus Lamarck 1819, non Linné 1758.
Holotype: ?
Type loc.: Chile.
Remarks: Molina (1782) says that this species can reach a length of seven inches and a height of 3.5 inches. It is stated to be good eating and the distribution is given as from Isla Quiriquina to the coast of the Golfo de Arauco.

This species has often been confounded with Mytilus edulis chilensis Hupé. The figure of the inside of the shell shows the essential characters separating this species from all other related forms.
Occurrence: Very little is known of the habitat of this species. It is commonly used for food in Chile, but apparently the fishermen have to use some special gear to catch it, as no records indicate an intertidal occurrence.
Distribution: Pacasmayo, Peru, south to Orange Bay, Tierra del Fuego.
Choromytilus palliopunctatus (Carpenter) 1855
Plate 1, fig. 5 ; text-figs. 4, 13
Mytilus palliopunctatus Carpenter, Catalogue of the Reigen Collection of Mazatlan Mollusca, 1855, p. 118.
Holotype: British Museum.
Type loc.: Mazatlán, Mexico.

Remarks: This is a remarkable species, as the retractor muscles are extremely strong and the tentacles on the mantle margin very large. The posterior retractors are only narrowly connected with the adductor dorsally, and the muscle-bundles lie almost horizontally toward the byssal groove, which is in the anterior third of the shell. The anterior retractor is placed below the ligament in the anterior third of the valves. The tentacles on the posterior part of the mantle are formed as broad stems with three to five branches, each furnished with numerous papillae. Between the main stems is one small tentacle, like one branch of the large ones. The dorsal siphon is long and slightly protruding.

The byssus is very strong. From a solid, round central stem, strong round branches extend to all sides. The foot is small, flattened below and furnished with a continuous slit. Behind the foot the visceral mass is seen penetrating halfway down into the mantle cavity.

The shell ordinarily is very worn, with the dark periostracum preserved on the younger parts only. The shell substance is worn off in several planes, forming different irregular keels on the anterior part. The ventral margin is bent slightly inward anteriorly.

Young Choromytilus palliopunctatus are sometimes very like small Semimytilus algosus (Gould), as they have a small anterior adductor; but the large anterior retractor easily separates them.
Occurrence: This species seems to be intertidal, living fastened to rocks and apparently on exposed coasts. The strong byssus and the worn shells seem to indicate that they are able to withstand heavy surf.
Distribution: Bahía de la Magdalena, Baja California, to Puerto Piñas, Panama.

Genus AULACOMYA Mörch 1853

Aulacomya Mörch, Catalogus Conchyliorum quae reliquit D. Alphonso d'Aguirra \& Gadea, comes de Yoldi. Fasc. secundus. Acephala, 1853, p. 53.

Type of Genus: Mytilus magellanicus Chemnitz 1785 p. p. $=$ Mytilus ater Molina 1782 (subsequent designation by Ihering 1900).
Remarks: Under Aulacomya nob. Mörch gave two species, magellanicus Chemnitz and crenatus Lamarck, Enc. Pl. 217 f. 3, both listed as from "Am. mer." and considered to be conspecific. Though M. magellanicus Chemnitz contained originally also Mytilus exustus Linné, the designation of magellanicus as the type of Aulacomya seemed to be valid.

Aulacomya is a distinct group. The outer form of the species is like other mytiliform species and is quite variable. Usually there are strong radiating striae over most of the surface, but sometimes, especially in specimens from more northern localities, the striae may be very indistinct. . . . The hinge consists of a broadly folded and turned up toothlike lunule in the left valve, with a corresponding depression in the right one. The nymphae are strong anteriorly and the resilial ridge compact. The anterior adductor is always distinct in small specimens but often obsolete or absent in larger ones (ater). The anterior retractor is elongate, behind the umbones; the posterior retractors are broadly united with the adductor. The posterior part of the mantle is furnished with tentacles.

This genus comprises three species occurring on both sides of South America, South Africa, Kerguelen Island, and New Zealand.

Aulacomya ater (Molina) 1782

Plate 1, fig. 6; text-figs. 17-18
Mytilus ater Molina, Saggio sulla Storia Naturale del Chili, 1782, p. 202. Syn.: Mytilus magellanicus Chemnitz 1785 pro parte, Lamarck 1819, non Röding 1798.
Mytilus bidens Dillwyn 1817, non Linné 1767.
Mytilus decussatus Lamarck 1819.
Mytilus crenatus Lamarck 1819.
Mytilus americanus Orbigny 1846.
Mytilus pyriformis Gould 1850.
Mytilus orbignyanus Hupé 1854.
Holotype: ?
Type loc.: Strait of Magellan.
Remarks: Chemnitz (1785, pp. 162-165), who introduced the name Mytilus magellanicus on his Pl. 83, figs. 742-743, for what undoubtedly must be this species, has confounded it with Mytilus exustus Linné. Molina (1782) mentions the large and the small Magellanic mussel as different from ater, followed by Röding (1798), who used the name Mytilus magellanicus for Chemnitz' fig. 738 (Pl. 83), which is Perna perna (Linné) $=$ Mytilus elongatus Chemnitz 1785. Molina (1782) has given a short but sufficient description of his ater: "Mytilus testa sulcata, postice squamosa," and says that it grows nearly as large as Mytilus chorus and is like a Pinna with an obscure blue color.

There have been many different views as to what Molina's ater really is. Dall (1909) mentions ater as a separate species resembling Mytilus edulis, but Lamy (1936) considers it to belong to Mytilus americanus

Orbigny and Mytilus magellanicus Chemnitz. Some authors consider ater to be the dark variety with obsolete radial ribs, mainly the more northern forms, but there seems to be no foundation for this supposition.

Aulacomya ater is an extremely variable species, like the other shallow water mytilids. The young shells are yellowish, sometimes with a bluish prodissoconch, and with distinct radiating ridges. The outline varies, sometimes curved, sometimes with a straight ventral margin or with the ventral margin convex. Older specimens become darker, with brown or bluish-black periostracum. The darkest specimens with very weak radiating ridges seem to be found especially in the northern parts of South America.

The mantle is furnished with numerous small tentacles posteriorly. The septum is usually as long as the dorsal siphonal opening and slightly thickened in the middle. Some large specimens show a distinct scar for the anterior adductor, while this usually is obsolete in older specimens. Occurrence: This species is reported from the intertidal zone down to at least 8 fms . The bottom is given as sand or sand and kelp, but apparently the specimens had been fastened to stones.
Distribution: A. ater lives from Callao, Peru, south to the Strait of Magellan, and on the east coast north to southern Brazil, and in the Falkland Islands. (This is not M. ater Dall (1909), Soot-Ryen (1932), which probably can be referred to Mytella falcata (Orbigny).)

Genus ISCHADIUM Jukes-Browne 1905

Ischadium Jukes-Browne, Proc. Malacol. Soc. London, vol. 6, 1905, p. 223.

Type of genus: Mytilus hamatus Say $1822=$ recurvus Rafinesque 1820 (orig.).
Remarks: Ischadium was described by Jukes-Browne (1905) as a subgenus of Brachidontes mainly because of the radiating sculpture. There are, however, so many characters that separate it from Brachidontes that there seems to be no reason why it should not be treated as a separate genus. This genus is characterized by the broad mytiliform shape with distinct radial sculpture over all the surface; the margins are crenulated, but the strong crenulations behind the ligament are absent; the hinge teeth are much like those of Mytilus s. s.; and the anterior retractor is roundish behind the umbones, the posterior retractors broadly united with the adductor. The mantle margins are smooth, without papillae. Apparently the genus is monotypic.

Fig. 17. Aulacomya ater (Molina). Off Middle Chincha Island, Peru. Posterior part of mantle.
Fig. 18. Aulacomya ater (Molina). Off Middle Chincha Island, Peru. Posterior part of mantle with dorsal opening seen from behind.

Fig. 19. Ischadium recurvus (Rafinesque). Santa Rosa Sound, Florida. No anterior adductor, broadly united posterior retractors and posterior adductor.
Fig. 20. Ischadium recurvus (Rafinesque). Santa Rosa Sound, Florida. Posterior part of mantle seen from behind, with long median flap of the septum.

Text-figs. 19-20
Mytilus recurvus Rafinesque, Ann. gén. des Sci. Physiques, vol. 5, 1820, p. 320 .

Syn.: Mytilus hamatus Say 1822.
Holotype: ?
Type loc.: ?
Remarks: The posterior part of the mantle is closed by a rather long septum with a long narrow median tongue, the dorsal opening rather short. The shell characters are those given for the genus and this species is easily recognized.
Occurrence: Reported by Dr. Tremper as collected from Newport Bay, California, one living specimen identified by Dr. Dall. It has not been observed later and the record may probably be due to an error, perhaps a misidentification of Arcuatula demissa (Dillwyn) (cfr. discussion in the Minutes of the Conchological Club of Southern California, no 36, June, 1944, p. 11).
Distribution: Newport Bay, California? Atlantic: Rhode Island to West Indies, Gulf of Mexico.

Genus HORMOMYA Mörch 1853

Text-figs. 21, 23
Hormomya Mörch, Catalogus Conchyliorum quae reliquit D. Alphonso d'Aguirra \& Gadea, comes de Yoldi. Fasc. secundus. Acephala, 1853, p. 53.

Type of genus: Mytilus exustus Linné 1758 (subsequent designation by Jukes-Browne 1905).
Remarks: Mörch gave no description of his supraspecific group, but listed three catalogue numbers, of which one species, the later type of the genus, was properly named. Hormomya was used earlier as a subgenus of Mytilus because of the anteriorly placed umbones, but Jukes-Browne (1905) placed it as a subgenus of Brachidontes because of the sculpture. There are several other characters which separate species of Hormomya from Brachidontes, and seem to necessitate a generic separation, at least until a study of many species of this group has been made.

The type of the genus, Mytilus exustus Linné, an Atlantic species ranging from North Carolina to the West Indies, has anterior umbones with four or five teeth, of which the anterior ones are the strongest, and a few crenulations along the anterior part of the ventral margin. The
posterior part of the ventral margin and the posterior and dorsal margins are crenulate, with some stronger crenulations behind the ligament. The posterior retractors are not fastened to the dorsal part of the adductor, but slightly below, so the dorsal margin of the adductor is higher than the retractors. This is not always discernible from the muscle scars.

The radial sculpture on the ventral part of the shell below the strong keel is not simply bifurcating, but usually has four or five separate lines arising from one radiating line. This is best seen in the oldest parts of the shell, and when properly observed is a fairly good character for separating species of Hormomya from Brachidontes. The same pattern of the radiating sculpture is also found in Septifer. The posterior part of the mantle margins is furnished with small, apparently very contractile, papillae.

If Hormomya is restricted to species with anterior umbones, strong umbonal keel, unilateral bifurcating lines or ribs on the ventral part, and the posterior retractors placed slightly below the dorsal margin of the posterior adductor, there seem to be only two west American species referable to this genus. Sometimes more aberrant specimens with apparently subterminal umbones and a curved anterior margin may be very difficult to place in the correct group, but usually the distinct umbonal keel separating a coarsely sculptured dorsal part from the finer sculptured ventral part, shows that the specimen belongs to Hormomya.
Key to the west American species:
The radiating ribs at least partly ornamented with distinct round granules, older specimens with very curved and inflated anterior part
granulata (Hanley)
The radiating ribs more or less smooth or furnished with transverse ridges, dorsal ribs usu-
ally much coarser than the ventral ones
adamsiana (Dunker)

Hormomya adamsiana (Dunker) 1856

Plate 3, fig. 11; text-figs. 22, 25, 31
Mytilus adamsianus Dunker, Proc. Zool. Soc. London, vol. 24, 1856, p. 360.

Syn.: Mytilus bifurcatus auct.
Mytilus stearnsi Pilsbry and Raymond 1898.
Holotype: British Museum.
Type loc.: Isthmus of Panama.
Remarks: The species to which Dunker's name adamsiana is applied is extremely variable and may perhaps constitute a mixture of two or more species. It has been impossible to solve the question with the material at
hand, but it is to be hoped that students will try to settle the problem in the future. There has been much discussion about this species, both in regard to the distinction of it and the proper name for it. Dunker's description fits one form only and should not be used for the many other heavily sculptured forms. The real Hormomya adamsiana should be of a dark purplish color and furnished with bifurcating ribs elegantly granulated. Pilsbry and Raymond (1898) introduced the name Mytilus stearnsi for the California species called Mytilus bifurcatus and in appearance very like Septifer bifurcatus (Conrad), with the type locality for M. stearnsi given as San Diego. In spite of these disagreements, I think it safest at the present time to use adamsiana Dunker for the variable complex of Hormomyas living along the Pacific coast of America from Santa Barbara, California, to Ecuador. There might be a possibility that Dunker's name should be used for another species, perhaps for Mytilus puntarenensis Pilsbry and Lowe, 1932, which has to be placed in the genus Brachidontes.

Fig. 21. Hormomya exusta (Linné). Long Key, Florida. Hinge of left and right valves.
Fig. 22. Hormomya adamsiana (Dunker). Isthmus Cove, Santa Catalina Island. Showing insertion of retractors in the posterior adductor.
Fig. 23. Hormomya sp. Sculpture on the ventral side, showing unilateral furcation. a. Enlarged part.
Fig. 24. Brachidontes sp. Sculpture on the ventral side showing bifurcation. a. Enlarged part.
Fig. 25. Hormomya adamsiana (Dunker). Isthmus Cove, Santa Catalina Island, California. Hinge.
Fig. 26. Hormomya granulata (Hanley). Bahía de la Independencia, Peru. Hinge.
Fig. 27. Brachidontes modiolus (Linné). Lower Matecumbe, Florida. Hinge of left and right valves.
Fig. 28. Brachidontes multiformis (Carpenter). Mazatlán, Sinaloa, Mexico. Hinge.
Fig. 29. Brachidontes puntarenensis (Pilsbry and Lowe), Punta Arenas, Costa Rica. Paratype. Hinge.
Fig. 30. Brachidontes purpuratus (Lamarck). Bahia de la Independencia, Peru, Hinge.
Fig. 31. Hormomya adamsiana (Dunker). Puerto Parker, Costa Rica. Mantle with dorsal opening, septum, and the small mantle papillae seen from behind.
Fig. 32. Brachidontes modiolus (Linné). Lower Matecumbe, Florida. Posterior part with tentacles on the mantle.
Fig. 33. Septifer bifurcatus (Conrad). San Pedro, California. Inside of right valve with the anterior septum for the adductor muscle, and the posterior adductor embracing the retractors.
Fig. 34. Septifer zeteki Hertlein and Strong. Off Colombia. Hinge and septum of right valve.

H. adamsiana is so like some of the forms of Septifer bifurcatus that the shells have to be opened to make the identification quite certain. Occurrence: Intertidal on rocky shores.
Distribution: Ecuador to Santa Barbara, California, including the Gulf of California and the Galapagos Islands.

Hormomya granulata (Hanley) 1843

Plate 3, fig. 12 ; text-fig. 26
Mytilus granulatus Hanley, Catalogue of Recent Bivalve Shells, 1843, p. 246, Pl. 24, fig. 33.
Holotype: British museum.
Type loc.: South America.
Remarks: This is the typical South American Hormomya living along rocky coasts. The color is yellowish-brown and the radiating ribs, which are of approximately the same width as the interspaces, are furnished with round granules, easily seen in side view. Large specimens are usually more inflated, with the anterior part strongly curved, giving the shells an odd appearance. The hinge is variable, but the right valve usually has three, the left valve two, stronger teeth. The posterior part of the mantle is furnished with papillae and the septum has a rather long median flap.
Occurrence: Intertidal, fastened to rocks.
Distribution: Lobos, Peru, to southern Chile.

Genus SEPTIFER Recluz 1848

Septifer Recluz, Revue Zool., 1848, p. 275.
Type of genus: Mytilus bilocularis Linné 1758 (subsequent designation by Stoliczka 1871).
Remarks: Species of this genus generally are very like Hormomya species, but they are easily separated by the anteriorly placed deck or septum for the anterior adductor. For some species, such as the California Septifer bifurcatus, it is necessary to open the shells before a determination can be made.

The outer form, sculpture, marginal crenulations, and hinge are very like those of Hormomya, and the mantle is armed with tentacles or papillae like those found in Hormomya species. The septum seems to grow out in the same way as the thick, elevated adductor scar in Hormomya or Brachidontes, since the anterior adductor becomes very narrow in shells with the ventral side flattened. The posterior adductor embraces the retractors dorsally, so these scars are different from Hormomya.

Species of Septifer are recorded from the Cretaceous. The recent spe-
cies are found mainly in tropical or subtropical waters. From the west coast of America only two species are recognized, as the statement of Clessin (1889) that Septifer crassus Dunker 1853 should be found in Peru is erroneous. There is, however, a possibility that specimens referred to S. bifurcatus Conrad constitute more than one species.
Key to the west American species:
Periostracum strong, dark, without hairs ; ribs
generally strong, irregular, hinge with at least
one single or compound large tooth
bifurcatus (Conrad)
Periostracum thin, light-colored, with long hairs; ribs fine, granulated; hinge with smaller teeth; light and bright-colored small species

zeteki Hertlein and Strong

Septifer bifurcatus (Conrad) 1837

Plate 4, figs. 19-20; text-fig. 33
Mytilus bifurcatus Conrad, Jour. Acad. Nat. Sci. Phila., vol. 7, 1837, p. 241, Pl. 18, fig. 14.

Holotype: lost.
Type loc.: Sandwich Islands, ?California.
Remarks: From Conrad's short description it is impossible to tell if his species is a Septifer or not. The color of his shell is stated to be dark purple and the habitat Sandwich Islands (Ouau, etc.). Carpenter (1864, p. 527) says: "The type is lost; the figure and description would suit many species. It is allocated, in Mus. Cum., to the Californian Septifer; but by Pease to a Sandwich Island Mytilus."

Though the type may have nothing to do with the Cuming Collection, the name bifurcatus has been used for the California Septifer. Dunker (1853) used the name Mytilus trifurcatus. Pilsbry and Raymond (1898) say that specimens of Mytilus bifurcatus described by Conrad and collected by Nuttall were presented to the Academy of Natural Sciences in Philadelphia, where they are still preserved. They probably were collected in California and they proved to be Septifer. But the allocation of the name bifurcatus to the genus Septifer cannot be said to be settled.

The outer form of this species is as variable as that of other intertidal mytilids. The keel from umbo to posteroventral angle is generally very pronounced and the ventral part flattened. The radiating sculpture is strong posterior to the keel, with the upper ribs bent dorsalward; the ventral ribs are weaker; all ribs are irregularly furcating. The periostracum is dark, blackish. The anteriorly placed umbones are strongly
twisted, with the lunule bent inward, at least in large specimens, and furnished with radiating furrows which form the teeth. Generally there is a single strong tooth more or less furrowed; but the teeth seem to be so variable that it is nearly impossible to give an adequate description of them. The margins are crenulated, with especially strong crenulations behind the ligament. The crenulations on the posterior margins are extremely variable.

The color of the interior is either whitish-gray or dark purplish, sometimes lighter anteriorly. The crenulations on the posterior margin are very fine on the dark-colored shells, while on the light-colored they are very often formed by the external ribs only. The number and form of the tentacles and papillae on the posterior mantle margin vary also, the tentacles being sometimes simple, sometimes digitate, with smaller papillae in between. All characters vary so much that a large amount of material will be needed to be able to decide if there is more than one species or not. The form with nearly smooth posterior part of the valves, named S. bifurcatus obsoletus by Dall, 1916, is found mixed with more heavily ribbed forms and seems not to be of subspecific value.
Occurrence: Usually intertidal, fastened to rocks.
Distribution: From Crescent City, California ($42^{\circ} \mathrm{N}$), south to Cabo San Lucas, Baja California. (One sample is labelled "Peru," but this is certainly wrong.)

Septifer zeteki Hertlein and Strong 1946

Plate 4, fig. 21 ; text-fig. 34
Septifer zeteki Hertlein and Strong, Zoologica, vol. 31, 1946, p. 71, Pl. 1, figs. 1-2.
Syn.: Septifer cumingii Recluz 1849. Mytilus cumingianus Reeve 1858.
Holotype: California Academy of Sciences. Paleo. Type Coll. Type loc.: Isla Taboga, Panama; 25 fms.
Remarks: Recluz (1849) described S. cumingi from "les côtes de l'île Annaa (près le détroit de Panama), dans l'Océan-Pacifique." Reeve (1858) records M. cumingianus from Panama. Carpenter (1855) says that this species, which he reports from Mazatlán, is extremely rare and closely resembles the young of S. bilocularis. He also mentions the "granulose ribs, with rather long bristly hairs rising up between." Mörch (1860) reports this species from Puntarenas, Costa Rica. Smith (1885) says: "The small shells described by Recluz as Septifer cumingii should not, I think, be separated from this species [S. bilocularis]" and remarks
that the only island "Annaa" he knows is in Polynesia. Because of these doubts, Hertlein and Strong have given the species a new name. There may have been a wrong locality attached to Cuming's type lot, as was often the case, and then the oldest name should be retained.

This species is easily recognized by the light and varying colors and the hairy periostracum. The apical septum is rather shallow, especially in small specimens. The largest specimen measured has a length of 11.8 mm.

Occurrence: While loose valves are found at many stations, living specimens seem to be rare. They are usually found on rocky or stony bottom from the shore down to 50 fms . The material at hand extends the distribution considerably.
Distribution: From Isla de Cedros, Baja California, south to Isla La Plata, Ecuador; Galapagos Islands.

Genus BRACHIDONTES Swainson 1840

Text-figs. 24, 27, 32
Brachidontes Swainson, A Treatise on Malacology, 1840, p. 384.
Type of genus: Modiola sulcata Lamarck 1819 (not 1805) $=$ Mytilus citrinus Röding $1798=$ Arca modiolus Linné 1767.
Remarks: The original description is: "Umbones prominent, not terminal; valves corrugated; hinge margin considerably angulated, teeth many, small, and crenate." The hinge of the Atlantic Brachidontes modiolus (Linné) shows three large teeth radiating from the umbones and a series of crenulations on the anterior margin, which continue the hinge in a different angle. This species seems not to fit the diagnosis completely and there might perhaps be some doubt as to what Swainson's sulcata really was.

As stated under Hormomya, species referred to this genus have simple bifurcating sculpture, the posterior retractor fastened along the dorsal part of the adductor, not quite terminal umbones, a more or less angulated anterior margin, and toothlike crenulations behind the ligament. Some of these characters may be very difficult to observe, but usually species of Brachidontes are easily separable from Hormomya. The posterior mantle margin is furnished with branched tentacles, though a branching apparently is not developed in some of the species. The tentacles or papillae are very contractile and sometimes difficult to see. It seems to be possible to separate five species occurring from Mexico south to the Strait of Magellan, but the distinctive characters are not convincing. Some specimens are
very difficult to place and I must admit that now and then some characters are more like Hormomya than Brachidontes. Perhaps there still might be unrecognized species of this genus, too.
Key to the west American species:

1. Sculpture obsolete on the ventral side, sometimes the whole surface nearly smooth, the length usually less than

12 mm
multiformis (Carpenter)
Sculpture more uniform, also on the ventral side

2
2. Coarsely ribbed species of variable outline, purplish with heavy black periostracum, and a series of small teeth
purpuratus (Lamarck)
Sculpture finer, periostracum lighter, outline more constant, some of the teeth larger than the crenulations 3
3. Umbonal keel flat, shell not inflated, sculpture uniform over all the shell, ribs fine and close-set, shells stained yellow-ish-brown, anterior margin broadly rounded

Umbonal keel usually distinct and shell inflated, sculpture obsolete or weaker on the ventral side, anterior margin narrow
4. Larger species to 17 mm of regular form

Smaller species to 10 mm of irregular form
playasensis (Pilsbry and Olsson)

4
puntarenensis (Pilsbry and Lowe)
houstonius Bartsch and Rehder

Brachidontes multiformis (Carpenter) 1855

Plate 3, fig. 13 ; text-fig. 28
Mytilus multiformis Carpenter, Catalogue of the Reigen Collection of Mazatlan Mollusca, 1855, pp. 118-120.
Syn.: ?Modiola semilaevis Menke 1849.
Holotype: British Museum.
Type loc.: Mazatlán, Mexico.
Remarks: Carpenter's description seems to have been based on what here is considered to be the true multiformis and on small heavily sculptured

Hormomya adamsiana. There appears always to be a smooth or obsoletely sculptured part behind the lunule; and the dorsal sculpture sometimes consists of distinct, but not exceptionally coarse, radiating ribs. The sculpture usually is fine and sometimes completely absent. The color varies from dark purple or brown dorsally to yellowish, white, or greenish-olive ventrally. The hinge is furnished with one to three, usually two, dark purplish larger teeth. Maximal length of specimens at hand is 13.2 mm . Occurrence: Intertidal among algae.
Distribution: From the northern part of the Gulf of California and Punta Rosarita, Baja California, to Ecuador.

Brachidontes purpuratus (Lamarck) 1819

Plate 4, fig. 18 ; text-fig. 30
Modiola purpurata Lamarck, Animaux sans vertèbres, vol. 6, part 1, 1819, p. 113.
Syn.: ?Mytilus ovalis Lamarck 1819.
?Mytilus exilis Philippi 1847.
?Mytilus exaratus Philippi 1847.
Mytilus bifurcatus Dautzenberg 1896.
Holotype: lost.
Type loc.: ?
Remarks: This species is extremely variable in form, sculpture, and color. Usually larger specimens are more or less worn, white on the beaks and on the anteroventral part, otherwise purplish with traces of the blackish periostracum. Large specimens of 40 mm in length are not uncommon. The hinge consists of several crenulations of nearly equal size and thus fits the description of Brachidontes much better than that of what was considered to be the type species.

The papillae on the posterior part of the mantle are puzzling, as they are sometimes quite distinct but usually seem to be completely absent. The retractor scars are often separated into several parts, usually six for the posterior muscles and two for the anterior ones. The anterior adductor scar is often very thick and raised above the main interior surface, simulating a "septum" to some degree. The marginal crenulations vary a great deal, but there are always distinct tooth-like crenulations behind the ligament.
Occurrence: Intertidal on rocky shores.
Distribution: Ecuador south to the Strait of Magellan. Atlantic north to Santa Cruz, Argentina.

Brachidontes playasensis (Pilsbry and Olsson) 1935

$$
\text { Pl. 3, fig. } 16
$$

Modiolus (Brachydontes) playasensis Pilsbry and Olsson, Nautilus, vol. 49, 1935, p. 17, Pl. 1, fig. 4.
Holotype: Academy of Natural Sciences of Philadelphia. No. 164617.
Type loc.: Playas, Santa Elena, Ecuador.
Remarks: This species is characterized by the fine radial sculpture of nearly the same strength over the whole surface and by the light brown color arranged on a white shell, partly concentric and partly in irregular blotches. The radial striae seem not to bifurcate except along the extreme dorsal and posterior margins, but the striae grow broader from the nearly smooth oldest part of the shell. There are fine, close-set concentric lines which cross the ribs and interspaces. The margins are finely crenulated except on the anterior part of the ventral margins. There are three teeth diverging from the umbones; the anterior margin is bent outward proximally and crenulated. The muscle scars are indistinct, the anterior adductor seems to be placed along the anterior border, which protrudes slightly beyond the umbones.

There might be some doubt if the specimen here referred to B. playasensis really is this species. The figure of the type of playasensis shows a shell very like Brachidontes puntarenensis in outline but apparently with a finer sculpture. The main difference between these two species seems to be that the sculpture is obsolete anteriorly in one but distinct in the other.
Occurrence: No data available.
Distribution: Ecuador.

Brachidontes puntarenensis (Pilsbry and Lowe) 1932

Plate 3, fig. 14 ; text-fig. 29
Mytilus (Hormomya) puntarenensis Pilsbry and Lowe, Proc. Acad. Nat. Sci. Phila., vol. 84, 1932, p. 104, Pl. 10, fig. 6.
Holotype: Academy of Natural Sciences of Philadelphia. No. 155629.
Type loc.: Puntarenas, Costa Rica.
Remarks: Through the kindness of Mr. E. P. Chace, a sample of the paratypes from the San Diego Museum was studied. Though the authors described it as a Hormomya and compared it to Mytilus exustus, this species belongs to the genus Brachidontes. The anterior margin is narrow, but the angulation in the hinge is observable, the muscle scars and the radial sculpture agree with Brachidontes as here interpreted. There might be a possibility that Dunker used the name Mytilus adamsianus
for this species and not for the Hormomya. It is closely related to Brachidontes playasensis and Brachidontes houstonius and perhaps the three species are local forms of one more variable species.
Occurrence: Stated to be common at the type locality, apparently intertidal.
Distribution: Puntarenas and Puerto Parker, Costa Rica.

Brachidontes houstonius Bartsch and Rehder 1939

Plate 3, fig. 15
Brachidontes multiformis houstonius Bartsch and Rehder, Smithsonian Miscellaneous Collections, vol. 98, no. 10, 1939, p. 14, Pl. 4, figs. 4-7. Holotype: United States National Museum. No. 472858. Type loc.: Bahía de Sulivan, Isla Santiago (James Island), Galapagos Islands; shore.
Remarks: This species was described as a finer sculptured subspecies of Brachidontes multiformis, assuming that the heavily ribbed specimens from Central America (here considered to be forms of Hormomya adamsiana (Dunker)) represented Carpenter's species. B. houstonius is very like B. puntarenensis from Costa Rica and might well be considered a smaller race of that species. The material studied is too small to allow a settlement of this question.
Occurrence: Intertidal on rocky shore.
Distribution: Galapagos Islands.

Genus MYTELLA new genus

Diagnosis: Shell of varying outline from mytiliform through modioliform to very elongate. Umbones subterminal or nearly terminal. Anterior margin smooth or furnished with three or four teeth, and the lunule radiately sculptured, the sculpture consisting of fine or coarse concentric lines. The dorsal part usually greenish and the ventral part yellowish or brown, with the greenish color sometimes concealed by darker color. The resilial ridge pitted like Mytilus s. s., but sometimes so narrow that the pittings are obsolete. Anterior adductor rather large, anterior retractor placed before or behind the umbonal cavity, and a distinct small scar seen between the anterior retractor and adductor scars. Posterior adductor confluent with the posterior retractor. The two posterior retractors widely separated, but the scars usually continuous; a small scar below the adductor, made by the mantle muscles. The posterior part of the mantle furnished with branching tentacles; the dorsal opening with smooth margins.

Type of genus: Modiola guyanensis Lamarck 1819.

Remarks: Though one of the species tentatively included in this new genus is mytiliform as to teeth, there are several distinct characters which easily separate the species of this genus from other mytilids. The green color, the pitted resilial ridge, and the rounded anterior retractor scar with the distinct scar below, are the most important shell characters; while the tentacles on the posterior pallial margin and the widely separated posterior retractor muscles are important characters of the soft parts. Two species, Mytella falcata (Orbigny) and Mytella guyanensis (Lamarck), live on both sides of Central America, while Mytella speciosa (Reeve) is restricted to the Pacific, and Modiola papyria Conrad, which perhaps should be placed in this group, is found on the Atlantic side only. The fossil species named inezensis by Conrad and the more northern restorationis van Winkle seem to belong to this genus also.
Key to the west American species:

1. Mytiliform with nearly anterior umbones and usually with distinct teeth and radiately sculptured lunule
falcata (Orbigny)
Modioliform with smooth anterior margins and not terminal umbones

Fig. 35. Mytella falcata (Orbigny). Laguna de Chacahua, Oaxaca, Mexico. Anterior retractor behind the umbo, a small scar just above the anterior adductor, distinct and apparently continuous scars of the posterior retractors.
Fig. 36. Mytella guyanensis (Lamarck). San Felipe, Gulf of California. Anterior retractor in umbonal cavity, a small scar just below the retractor scar, narrow and apparently continuous scars of the posterior retractors.
Fig. 37. Mytella speciosa (Dunker). Bahía de la Magdalena, Baja California. Anterior retractor before the umbo, a small scar between the retractor and the adductor scars, posterior retractor and adductor scars weak.
Fig. 38. Mytella falcata (Orbigny). Laguna de Chacahua, Oaxaca, Mexico. Posterior part of the mantle with papillae.
Fig. 39. Mytella falcata (Orbigny). Laguna de Chacahua, Oaxaca, Mexico. The muscles of the foot and byssus, anterior retractor slender, posterior retractors of the foot divided into two branches.
Fig. 40. Mytella falcata (Orbigny). Laguna de Chacahua, Oaxaca, Mexico. Enlarged part of the papillae of the mantle.
Fig. 41. Mytella guyanensis (Lamarck). San Felipe, Gulf of California. Posterior part of the mantle with papillae.
Fig. 42. Mytella guyanensis (Lamarck). San Felipe, Gulf of California. Enlarged part of the papillae of the mantle from preserved specimen.
Fig. 43. Mytella guyanensis (Lamarck). San Felipe, Gulf of California. Enlarged part of the papillae of the mantle drawn from a living specimen.

Fig. 44. Mytella guyanensis (Lamarck). Distribution mainly according to samples in American museums.
2. Anterior retractor before umbo, shell thin, Anterior retractor behind umbo, shell very elongate and nearly smooth speciosa (Reeve) thicker with concentric sculpture guyanensis (Lamarck)

Mytella falcata (Orbigny) 1846
Plate 5, fig. 24; text-figs. 35, 38-40, 45
Mytilus falcatus Orbigny, Voyage dans l'Amérique Méridionale, vol. 5, Mollusques, 1846, p. 645, Pl. 84, figs. 38-39.
Syn.: ?Mytilus strigatus Hanley 1843 (Hinds MS).
Mytilus charruanus Orbigny 1846.

Modiola mutabilis auct. non Carpenter 1856.
 Mytilus nitens auct. non Carpenter 1856.
 Modiolus arciformis Dall 1909.

Holotype: ?
Type loc.: Rio de Janeiro.
Remarks: This extremely variable and widely distributed species is found under many different names in museum collections. There is some doubt about the oldest name for the species. If Mytilus strigatus Hanley, Pl. 24, fig. 34, with the description on p. 251 as of Hinds 1844, really represents the species, the name has to be changed accordingly. The original diagnosis does not mention any locality. On p. 388, Hanley says that Hinds intended to describe this species but never did it, and it has subsequently been termed Mytilus falcatus by Orbigny (S. Am.).

Reeve (1857) concurs with Hanley in giving the Philippine Islands as the habitat for Modiola strigata Hanley, and considers that Mytilus strigatus Hanley is the same species. Reeve's species is thought to be Mytilus sinuatus Reeve by Lamy (1936), who uses Mytilus strigatus Hanley for the Mexican species. There seems, however, to be no justification for this; so if the locality, Philippine Islands, is correct, it is safest until otherwise proved, to use Mytella falcata (Orbigny) for this species. Orbigny (1846) used the name Mytilus falcatus in the description, p. 645, but the name Mytilus charruanus for the figure, Pl. 84, figs. 38-39.

Carpenter (1856) described Modiola nitens as from California but later (1864) said: "The shell was erroneously described as from 'California' in P. Z. S., and does not appear in the Reigen Mazatlan Cat.: = M. subpurpureus, Mus. Cum." Dall (1909) described Modiolus arciformis on two fragments from Ecuador. Though these fragments represent rather arcuate specimens, they are conspecific with ordinary Mytella falcata and the same form is also found on the Atlanic side.

Mytella falcata has nearly terminal umbones and a short rounded anterior margin, sometimes narrow, sometimes broader. The lunule is furnished with radiating folds forming three or four teeth on the anterior margin. Usually there is a distinct dorsal angle, but sometimes the dorsal margin is evenly curved. Specimens from different localities may often appear to belong to different species. The same forms, however, are recorded from both oceans and from widely separated localities. The color usually is distinct, with yellowish-brown anteroventral part and green dorsal part. The green color may be uniform or shown as dark criss-cross bands on a lighter surface. Some populations are nearly black, but a
greenish hue is observable at least on the keel. The periostracum is more or less shining, with a narrow dull stripe along the ligament. The interior is usually dark purple.

It is easy to confuse this species with Mytilus s. s. The best character, aside from the color, is the round scar made by the anterior retractor, as this scar is always elongate in Mytilus s. s. Between the anterior adductor and retractor a small but distinct scar is seen. This scar seems to be made by a thickening of the mantle and not by a branch of the anterior retractor. The posterior retractores bysii are widely separated, though the scars are continuous. The foot retractor is small and attached in front of the first posterior retractor. The byssus consists of numerous fine threads from a main stem.

The posterior part of the mantle margin is folded and furnished with papillae or tentacles from the posteroventral corner upward to where the two lobes unite. The dorsal opening has smooth, slightly protruding margins. The septum terminates in a triangular flap. Mantle margins and septum are pigmented with dark brown in the specimens studied. The labial palps are very long, reaching to the foot.
Occurrence: As far as is known, this species lives in the mud on intertidal flats and in shallow lagoons down to 6 fms. One sample was taken from the bottom of a boat in the estuary of Guaya, Ecuador. The two samples from the Hancock expeditions extend the distribution north to southern Mexico.
Distribution: The northernmost Pacific record is from Bahía de Petatlán, Mexico. (One specimen in the San Diego Museum was found in a sample of Mytella guyanensis from La Paz, Baja California, but apparently had been misplaced.) The southernmost Pacific record seems to be the estuary of Guaya, Ecuador. A sample in the California Academy of Sciences is from Isla Baltra (South Seymour Island), the Galapagos Islands. On the Atlantic side, Mytella falcata is recorded from the Golfo de Paria, Venezuela, to Cabo San Antonio, Argentina.

$$
\text { Mytella speciosa (Reeve) } 1857
$$

Plate 5, fig. 25 ; text-fig. 37
Modiola speciosa Reeve, Conchologia Iconica. Modiola, 1857, Pl. 7, Species 35.
Syn.: Modiolus tumbezensis Pilsbry and Olsson 1935.
Holotype: British Museum?
Type loc.: Tumbes, Peru.

Remarks: This thin-shelled species, which is very elongate when fullgrown, seems to be rather rare. Smaller specimens are very like small Mytella guyanensis, but they can always be separated by the difference in the position of the anterior retractor.

Mytella speciosa (Reeve) has been labelled Modiola picta Lamarck or Modiola planulata (Lamarck) in many collections.
Occurrence: Intertidal, according to Pilsbry and Olsson (1935).
Distribution: Northern Peru; Golfo de Fonseca, Nicaragua; Bahía de la Magdalena, Baja California.

Mytella guyanensis (Lamarck) 1819
Plate 5, figs. 22-23; text-figs. 36, 41-44
Modiola guyanensis Lamarck, Animaux sans Vertèbres, vol. 6, part 1, 1819, p. 112.
Syn.: Mytilus modiolus brasiliensis Chemnitz 1795. Modiola semifusca Sowerby 1830, non Lamarck 1819.
Modiola sinuosa King 1831.
Modiola ? brasiliensis var. mutabilis Carpenter 1856.
Holotype: ?
Type loc.: Guiana.
Remarks: This widely distributed and variable species cannot, as far as is known, be separated into Atlantic and Pacific races on the basis of shell characters. The samples preserved in the various museum collections studied show the same variations in both oceans. The typical form is a beautiful shell, bright green above the keel and yellow-brown on the ventral and anterior parts, and of a high regular form. Reeve (1857) says that the more uniformly dark-colored form should be considered typical, but the dark-colored forms are very often of a more irregular outline and seem to be the same as Carpenter's var. mutabilis. The green color is often made up of branching green lines on a darker brownish ground color. The anterior adductor is placed high up along the anterior margin, the anterior retractor in the umbonal cavity just behind the umbones; and a small scar below is very distinct and situated halfway between the adductor and the retractor. In small specimens, the scars of the two parts of the posterior retractors may be separated; but usually these scars seem to be continuous. The interior of the shell is whitish, distinctly tinged with violet on the muscle scars and on the posterior part. The posterior part of the mantle margin is furnished with branched tentacles very like those of Mytella falcata.

Fig. 45. Mytella falcata (Orbigny). Distribution mainly according to sample in American museums.

Fig. 46. Arcuatula demissa (Dillwyn). New London Bay, Gulf of St. Lawrence. Anterior retractor in the umbonal cavity, a small scar between the anterior adductor and retractor scars.

Occurrence: M. guyanensis is found attached to stones and nearly buried in muddy sand in the intertidal zone. The posterior part with the fringed branchial opening is above the surface of the sand.
Distribution: In the Pacific from the northernmost part of the Gulf of California south to Payta, Peru (or Sandwich Islands, Chile, according to one sample in the Museum of Comparative Zoology, Cambridge, Mass. The only Chilean Sandwich Island I know is situated in Tierra del Fuego, so either the label is wrong or there is another Sandwich Island in northern Chile.)

It is also recorded from Laguna de San Ignacio and Bahía de la Magdalena, Baja California. In the Atlantic, it is found in scattered localities from the Golfo de Paria, Venezuela, to Rio de Janeiro. One sample, also in the Museum of Comparative Zoology, is from Puerto Rico, the first record from the West Indian Islands.

Genus ARCUATULA (Jousseaume) Lamy 1919

Arcuatula (Jousseaume) Lamy, Paris. Bul. Mus. Nat. d'Hist. Nat., vol. 25, 1919, pp. 173-174.
Type of genus: Modiola plicatula Lamarck $1819=$ demissa (Dillwyn) 1817 (orig.).
Remarks: Lamy (1919), referring to notes made by Jousseaume, says, sub Modiola arcuatula Hanley: "M. le Dr. Jousseaume place le Mod. arcuatula dans un nouveau genre Arcuatula, créé pour le groupe des Modiola, dont presques toutes les espèces sont arquées et dont la forme typique est cella du M. plicatula Lamarck [$=$ demissa Dillwyn]: les coquilles de ce genre, dont les unes sont presque lisses et d'autres fortement striées, ont le bord du ligament très long, et l'angle formé par ce bord et le postérieur est mousse et souvent arrondi; dans le genre Brachydontes, au contraire, le bord du ligament est court, l'angle plus saillant et le bord postérieur souvent très long et arqué en dedans." The generic name Arcuatula certainly was intended to be used for Modiola arcuatula Hanley, but the passage given by Lamy shows that Jousseaume himself chose Modiola demissa as the type of the genus.

This common east coast shell has been referred to either Modiolus or Brachidontes by various authors, and definitely needs a proper generic name. The characters separating Arcuatula from Brachidontes are many, of which the lack of toothlike crenulations behind the ligament is the most conspicuous. Most of the distinctive characters are the same as those found in Modiolus. The adductor and the retractor scars are very like those found in some species of Modiolus, the posterior mantle mar-
gins are smooth without papillae or tentacles, and the outline is modioliform. Characters separating Arcuatula from Modiolus are the radial sculpture ; the distinct radial folds on the lunule which make the anterior margin crenulated; the shallow form; and the weak nymphae and the relatively light ligament.

It is difficult, without a close examination of the various Pacific species assigned to Arcuatula, to decide if they should be referred to this genus or not.

Arcuatula demissa (Dillwyn) 1817

Plate 9, fig. 47 ; text-fig. 46
Mytilus demissus Dillwyn, Descriptive Catalogue of Recent Shells, vol. 1, 1817, p. 314.
Syn.: Modiola plicatula Lamarck 1819.
Modiola semicostata Conrad 1837.
Holotype: ?
Type loc.: Carolina.
Remarks: This species is easily recognized by the radial sculpture and Modiolus-like form. The anterior retractor has a small ventral branch; otherwise the muscle scars are very like those found in Modiolus. A good figure of a specimen from San Francisco Bay is given by Fitch (1953). Occurrence: Reported from San Francisco Bay, introduced from the east coast with seed oysters. It is common on the mud flats between San Mateo and San Francisco (cfr. Hanna 1921). Mr. L. C. Bessom, Los Angeles, has found this species living intertidally, but near the high tide level, in the upper part of Newport Bay. One specimen has a length of 90 mm .
Distribution: California, San Francisco Bay and Newport Bay (introduced). Atlantic. Gulf of St. Lawrence to Florida.

Genus MODIOLUS Lamarck 1799
Modiolus Lamarck, Mém. Soc. Hist. Nat. Paris, 1799, p. 87.
Syn.: Volsella Scopoli 1777.
Modiola Lamarck 1801.
Perna H. and A. Adams 1858.
Eumodiolus Ihering 1900.
Type of genus: Mytilus modiolus Linné 1758 (subsequent designation by Gray 1847.)
Remarks: There have been, and still are, different opinions as to the validity of Scopoli's genus because he described M. modiolus Linné as
having one tooth. In fact, Modiolus species usually have one toothlike projection where the anterior margin stops below the ligament. This projection is easily seen in most of the specimens of every size, not only in young ones, as mentioned by Dall, Bartsch, and Rehder (1938) ; and the presence of this projection proves that Scopoli was a careful observer. Though the use of V olsella now is generally accepted, the International Commission on Zoological Nomenclature in Opinion 325, issued January 7th, 1955, has made a suspension of the rules and accepted Modiolus Lamarck 1799 as a nomen conservandum according to a motion by J. L. Baily, Jr. This change came after this paper was in print and the necessary corrections had to be made during the proof reading.

The typical Modiolus has a smooth, elongate shell with slightly curved ligamental margin, a curved dorsal margin without a pronounced dorsal angle, and the umbones placed slightly behind a rounded anterior margin which is bent slightly outward. The anterior adductor is elongate and placed ventrally, the anterior retractor leaves a rounded scar in or behind the umbonal cavity, the posterior adductor is placed in the upper half of the shell and is continuous with the long and narrow bundle of posterior retractors. The periostracum is heavy and furnished with hairlike protuberances, at least on the dorsal and posterior part. On the anterior margin, a lunule is visible by the dull periostracum, especially in younger specimens. The resilial ridge is compact, and the nymphae, usually strong, are rather distant from the dorsal margin, making the ligamental area broad. The dorsal siphonal opening is oval with smooth margins and does not form a siphon which can be extended ; the mantle of the branchial opening is thin or thickened, but always without tentacles or papillae.

Unfortunately a multitude of species with the outline of Modiolus but with radiating sculpture, different placement of the muscles, or differences in the anatomy, have been referred to this genus. Many of these species show affinities to other groups, e. g., to the Musculus group (Lioberus), and some should be placed in new genera. Before a more correct grouping of the species can be completed, the anatomical and conchological characters must be studied carefully. Until then, the species which are doubtfully allocated to this genus should be cited as "Modiolus" sp.

The Modiolus type can be traced back in time to the first origin of the family Mytilidae and certainly represents the oldest element of this family, or perhaps forms the continuation of the Modiolopsidac. The flatter species of Volsellina Newell seem to be closely related to some recent Modiolus-like species.

Jousseaume has, according to Lamy (1919) established three new genera for various types of Modiolus. Genus Modiolatus Jousseaume (1893) was erected for Mytilus plicatus Chemnitz and for several other species; but as M. plicatus Chemnitz 1785 (p. 153, Pl. 82, figs. 733 a and b) does not seem to be a mytilid, this genus is very questionable. Genus Arcuatula (Jousseaume) Lamy 1919, made for species with radiating sculpture (Mytilus demissus (Dillwyn) 1817), is considered to constitute a valid genus and is here treated as such. Genus Fulgida (Jousseaume) Lamy 1919, was established for Perna fulgida H. Adams (supposed to be synonymous with Modiola lignea Reeve by Lamy, with Modiola philippinarum Hanley by Iredale, 1939). Jousseaume wrote (cited by Lamy) that Fulgida was characterized by the glossy posterior and dorsal parts, while the ventral region, which usually is glossy and shining in Modiolus, is dull. This group may perhaps be used when the Fulgida of Jousseaume has been critically studied.

The west American species of Modiolus are partly of the typical form and partly with a straight hinge line having a more or less distinct dorsal angle. All are at present included in the genus Modiolus s. s. Volsella salvadorica Hertlein and Strong 1946 is not a Modiolus and is provisionally referred to the genus Lioberus Dall. One species is considered to be unnamed and is here described as Modiolus neglectus n . sp.

Young specimens are sometimes very difficult to refer to a particular species. The young specimens of neglectus and eiseni are rather easy to determine, while small sacculifer, fornicatus, modiolus, and sometimes capax, may be very difficult to separate. Small specimens with long smooth periostracum hairs may perhaps represent still another unrecognized species, but the material at hand is unfortunately too limited to allow a settlement of this problem. Carpenter (1855-57) says that very young specimens of capax have long smooth hairs which become relatively shorter and serrate. If this really is the case, young capax also can easily be confused with young specimens of other species. As there seems to be no safe way to name small specimens at present, they are not considered in this paper.

One specimen from Ecuador shows strong affinities to the Atlantic Modiolus americanus (Leach) and is listed tentatively under that name, together with specimens from Mazatlán and Bahía de la Magdalena found in the collections of the California Academy of Sciences.
Key to the west American species:

1. Periostracum with serrate hairs, left valve usually more inflated than the
right one, shell color often red in dried specimens, dorsal part of inside usually dark colored
Periostracum with smooth hairs, usually equivalve
2. Umbones inflated, twisted downward and outward, protruding beyond the anterior margin
Umbones less inflated and twisted, never protruding beyond the anterior margin
3. Anterior margin protruding for a considerable distance beyond the umbones, the anterodorsal margin with a narrow lunule and forming a sharp keel toward the umbones, dorsal margin straight
Anterior margin only slightly protruding beyond the umbones, the lunule rather broad, anterodorsal margin not forming a sharp keel and dorsal margin curved
4. Posterodorsal angle sharp ($120^{\circ}-140^{\circ}$), shell relatively short, the height measured perpendicularly to the hinge line distinctly more than half the length of the hinge line
Posterodorsal angle rounded, shell more elongate, the height measured perpendicularly to the hinge line half the length of the hinge line
5. Shell triangular, posterodorsal angle about $120^{\circ}-130^{\circ}$, posterodorsal part red Shell rhomboidal, posterodorsal angle about 140°, posterodorsal part brown-ish-yellow
6. Anterior part typically pouting, forming a small but distinct narrow lobe, the margin bent considerably outward, shell thin, inside margaritaceous
Anterior part more or less broadly rounded

2
fornicatus (Carpenter)
3
capax (Conrad)

7. Shell rather solid without bright colors, periostracum thick with solid hairs, shell color typically reddish-violet . modiolus (Linné) Shell rather thin, often with color rays posteriorly, periostracum light brown, thin, with adherent sand grains and shell particles, finer and broader hairs
americanus (Leach)

Modiolus capax (Conrad) 1837

Plate 6, fig. 30; text-figs. 50, $53 \mathrm{a}-\mathrm{b}, 54,55$
Modiola capax Conrad, Jour. Acad. Nat. Sci. Phila., vol. 7, 1837, p. 242.
Syn.: ?Modiola spatula Menke 1849.
Modiola subfuscata Clessin 1889.
Holotype: Academy of Natural Sciences, Philadelphia?
Type loc.: San Diego, California.
Remarks: This species, in spite of the variable form, is always easily recognized by the serrate hairs on the periostracum, and by the left valve, which is usually more inflated than the right one, the difference being

Fig. 47. Modiolus modiolus (Linné). The stippled anterior part indicates the lunule.
Fig. 48. Modiolus modiolus (Linné). Anterior part seen in an oblique view. Anterior retractor in the umbonal cavity behind the umbo. The tooth-like projection of the anterior margin behind the umbo is usually still more distinct.
Fig. 49. Modiolus neglectus n. sp. Long Beach, California. The interior with muscle scars.
Fig. 50. Modiolus capax (Conrad). Posterior part seen from behind.
Fig. 51. Modiolus neglectus n. sp. Long Beach, Calif. Posterior part seen from behind.
Fig. 52. Modiolus modiolus (Linné). Aleutian Islands. Posterior part seen from behind.
Fig. 53. a.b. Modiolus capax (Conrad). Puerto Refugio, Isla Angel de la Guarda, Gulf of California. Two different periostracum hairs from one specimen.
Fig. 54. Modiolus capax (Conrad). Sulphur Rock, Puerto San Bartolomé, Baja California. Periostracum hair.
Fig. 55. Modiolus sp. (perhaps capax Conrad). Santa Catalina Island, California. Periostracum hair of a peculiar type.
Fig. 56. Modiolus americanus (Leach). $1 / 2$ mile SE of Punta Hughes, Bahía de Santa María. Periostracum hair.
Fig. 57 a.b. Modiolus sacculifer (Berry). San Miguel. Two types of periostracum hairs from one specimen.
Fig. 58. Modiolus sacculifer (Berry). S. of Pillar Point, Halfmoon Bay, California. Periostracum hair.
Fig. 59. Modiolus neglectus n.sp. Long Beach, California. Periostracum hair.

No. 1

especially visible in the umbonal region. The hairy protuberances of the periostracum and the serrations on them are somewhat variable, from narrow to broader hairs with shorter or longer serrations on one side. Different types may be found on the same specimen. Carpenter (1855-57) says that very young specimens have long but not serrated hairs; usually serrated hairs are distinct even on specimens only 10 mm long. Two specimens with a length of 12 mm , one from Pt. Fermin, the other from Catalina Island, might be aberrant specimens of M. capax, as they have spadeshaped, but smooth, periostracum hairs.

The inside is generally reddish-violet on the posterior half. The dorsal mantle opening is rather large, elongate, usually with the rectum visible. The mantle edges of the branchial part are thin and the septum short, so the connection between the branchial and anal cavities is wide open.
Occurrence: Intertidal on rocks or boulders, often in mud down to 25 fms.
Distribution: Santa Cruz, California, to Payta, Peru; Galapagos Islands.

Modiolus fornicatus (Carpenter) 1865

Plate 6, fig. 26
Modiola fornicata Carpenter, Ann. and Mag. Nat. Hist., ser. 3, vol. 15, 1865, p. 178.
Holotype: In the collection of Mrs. Boyce, Utica, N. Y.
Type loc.: Santa Barbara, California.
Remarks: This species has been misinterpreted several times and the name fornicata has been used for specimens of M. sacculifer (Berry). M. fornicatus is easily recognized in typical specimens by the very inflated and curved oldest part of the shell, with the umbones protruding beyond the anterior margin. Smaller, less inflated specimens with less curved and protruding umbones, seem to be very like the young of other species of Modiolus. Good representative material of all sizes must be studied before M. fornicatus can be correctly described.

Large specimens between 11 mm and 35 mm have thick valves with a violet line inside, and a shining brown periostracum with remains of smooth hairs on the posterior part. The ligament is relatively short, the anterior part concealed between the umbo and the anterior margin; the anterior adductor is deepset, distant from the anteroventral margin; and the anterior retractor is fastened in the deep umbonal cavity.
Occurrence: Very little is known about the habitat of this species, as it has been confused with M. sacculifer (Berry).
Distribution: Trinidad, Humboldt County, California, to San Pedro and Cortez Bank, California.

Modiolus rectus (Conrad) 1837

Plate 7, figs. 33-35
Modiola recta Conrad, Jour. Acad. Nat. Sci. Phila., vol. 7, 1837, p. 243, Pl. 19, fig. 1.
Syn.: Mytilus (Modiola) fabellatus Gould 1850.
Holotype: Academy of Natural Sciences, Philadelphia.
Type loc.: Santa Barbara, California.
Remarks: This slender, elongate species is, in its typical form, easily known from other west coast Modiolus; but it has been confused with M. neglectus, which some authors have supposed to be the form or variety M. fabellatus (Gould). M. rectus is always more elongate and never shows the distinct posterodorsal angle of M. neglectus. The straight dorsal margin extends over to the posterior margin in a long arch without angulation. The color of the shell and the periostracum, and the posterodorsal hairs on the periostracum, are very like M. neglectus. The adductors are strong and so are the posterior byssal retractors, while the retractor of the foot and the anterior retractor are relatively weak. The posterior part of the mantle is very thick and shows a broad swollen branchial part.

Specimens collected by Mr. E. P. Chace at Alamitos Bay, Long Beach, California, May 4, 1954, were heavily infested with a parasite which formed a black, continuous body tapering from the posterior adductor toward the anterior end. This mass could be seen in the sides of the body and had penetrated into the gonads. It consisted of round hyaline elements, 0.1 mm in diameter, with a black central body. The nature of the parasite is not known.

There has been some discussion about M. fabellatus (Gould) 1950, described from Puget Sound. This form is much larger than the typical rectus, usually with the posteroventral part growing more rapidly than the rest of the shell, so that this part seems to be bent downward. Other specimens are more like the figure of the type in the report of the U.S. Exploring Expedition, reproduced by Oldroyd (1924, Pl. 6, fig. 2). These are all large specimens of M. rectus, as is easily seen when the growth lines of the older parts of the valves are studied. Such large specimens may be found wherever M. rectus lives and are not confined to a more limited area, though there seems to be some doubt whether small specimens really are found in the northernmost localities. The name M. flabellatus (Gould) is therefore a synonym of M. rectus and not a name for a special or northern form. Large specimens can reach a length of 23 cm .

Occurrence: Living burrowed in mud with the posterior margin above the surface, from the intertidal zone down to 25 fms . A "nest" of mud and sand particles seems to be built like that of M. neglectus, to prevent mud particles from entering the mantle cavity and to anchor the animal in the mud.
Distribution: Vancouver Island, British Columbia, to Outer Gorda Bank and Bahía Concepción (Boone, 1928), Baja California.

Modiolus eiseni Strong and Hertlein 1937

Plate 6, fig. 29
Modiolus eiseni Strong and Hertlein, Proc. Calif. Acad. Sci., vol. 22, 1937, pp. 160-161, Pl. 34, figs. 11, 14-16.
Holotype: California Academy of Sciences, no. 6968.
Type loc.: 38 miles SE of Mazatlán, Sinaloa, Mexico; 10-17 fms.
Remarks: This species might perhaps be Modiola biradiata Hanley 1843, but as the locality of Hanley's species is doubtful and the description seems to show minor differences, it is safest to use the name given by Strong and Hertlein. Eight small specimens of this typical species were found in the Hancock material, maximal length, 11.5 mm .

The lunule is dull and rather large and the white prodissoconch is elongate, oblique. The anterior adductor is narrow and follows the anterior margin. The posterior part of the mantle margins is thickened, the septum short, ending in a rounded knob, and the dorsal opening is elongate.
Occurrence: Recorded from 2 to 50 fms , or to 200 fms if the deepest haul mentioned by Strong and Hertlein is used. The bottom conditions are given as mud, sand, or shells. The Hancock material extends the distribution of this species from Mazatlán south to Panama.
Distribution: From off Outer Gorda Bank, Gulf of California, to off Bahía Honda, Panama.

Modiolus neglectus new species
 Plate 7, figs. 31-32; text-figs. 49, 51, 59

Syn.: Volsella recta auct. non Conrad 1837.
Volsella flabellata auct. non Gould 1850.
Diagnosis: Shell elongate, inflated, with straight dorsal margin which reaches considerably before the umbo, sharply rounded from the anterodorsal angle; anterior margin sloping and evenly rounded to the nearly straight ventral margin. Posterodorsal angle rounded, posterior margin slightly convex and meeting the dorsal margin in an angle of about 140°,
which seems to be very constant. The anterodorsal margin raised and continuing to the close-set umbones; the upper dorsal part forming a lunule with dull periostracum. The shell bluish-white; the periostracum shining yellowish-brown, darkest and most shining in the median part of the shell, which often shows radial striations of darker and lighter color. On the rather prominent kecl, the periostracum furnished with dense hairlike protuberances broad at the base, with a dorsal thicker part forming the hairs, which have a thinner membrane ventrally; the hairs less numerous toward the dorsal margin. The interior bluish-white ; the anterior margin distinctly bent outward on the dorsal part and continuing slightly behind the umbo, ending in a small "tooth"; the ligament occupying three fourths of the posterior dorsal margin. The anterior adductor elongate and placed rather high up along the anterior margin ; the posterior adductor round, with the continuous retractors starting above the adductor; the anterior retractor fastened in the umbonal cavity. The byssal cavity placed just behind the foot. The dorsal marginal opening small, the branchial part of the mantle margins thickened, the septum with a median flap.
Holotype: The Allan Hancock Foundation. Length, 88 mm ; height, 37.5 mm ; diameter, 33.5 mm .
Type loc.: San Diego, California.
Remarks: This apparently rather common species has been unrecognized for years, though the form is so typical and so different from M. rectus, that they can be separated at a glance. M. neglectus is much more inflated than M. rectus; the ratio of H / L, where L is the total or greatest length, is 35% to 40% in M. neglectus, while in M. rectus the same ratio is 25% to 30%.
Occurrence: M. neglectus seems to prefer deeper water than M. rectus, as the records are from 10 to 57 fms . It lives in sand or mud and spins a "nest" of small particles and fine byssus threads.
Distribution: Exact distribution unknown, but according to the material at hand it occurs from Monterey Bay, California, to Outer Gorda Bank, Baja California.

Modiolus sacculifer (Berry) 1953
Text-figs. $57 \mathrm{a}-\mathrm{b}, 58$
Volsella sacculifer Berry, Trans. San Diego Soc. Nat. Hist., vol. 11, no. 16, 1953, pp. 407-409, Pl. 28, figs. 1-2.
Holotype: Stanford University, no. 7853.
Type loc.: San Pedro Harbor, California.

Remarks: The periostracum is hairy sometimes over most of the surface but always on the posterior part ; the hairs are fine, often with a narrow lateral velum, and coarsest on the posterior side.

The anterior lunular part, so characteristic in most of the specimens, is not so well defined in small specimens, which often look very like small M. modiolus. The lunule is dull and usually distinctly set off from the rest of the shell. The inside is margaritaceous, white or reddish-white; the shell is thin compared to M. capax and M. fornicatus. The ligament is short, and the umbones nearly touch in the middle.

The anterior adductor is placed along the anterior part of the ventral margin, the posterior adductor is strong, with the retractors narrowly separated in two series, the anterior retractor strong. The posterior mantle margin is thick and protruding, the septum short with an inwardly bent median flap, and the dorsal opening large. The foot is strong, somewhat flattened; and the labial palpae are long.
Occurrence: Apparently a deeper water species living in "nests" of sand or hidden among holdfasts, etc.
Distribution: Hitherto recorded from Bechers Bay, California, south to San Clemente Island, California.

Modiolus modiolus (Linné) 1758

Text-figs. 47, 48, 52
Mytilus modiolus Linné, Systema Naturae, ed. 10, 1758, p. 706.

Holotype: ?

Type loc.: The Mediterranean.
Remarks: Typical specimens of this species, which is very common in the north Atlantic, are found in the northern parts of the Pacific. Smaller specimens have strong but smooth hairs on the periostracum, but these hairs are usually lost in older specimens. The anterior part is rounded and protrudes slightly beyond the umbones. The rather large lunule is dull and usually distinct in smaller specimens. The outline is rather variable and sometimes is much like some forms of M. americanus (Leach) or M. capax (Conrad). The posterior part of the mantle is much like that of M. capax, but the margins are more protruding and the septum longer, with a more pronounced median flap.

There has been much discussion about the distribution of M. modiolus on the west coast. Usually the southern limit is stated to be Laguna de San Ignacio, Baja California, but Burch, quoting Myra Keen, favors a southern limit at Monterey (see discussion in the Minutes of the Conchological Club of Southern California, no 36, June, 1944, p. 12). The rec-
ord from Laguna de San Ignacio may perhaps be founded on specimens of Modiolus americanus (Leach). Small specimens of M. modiolus are at present impossible to identify with certainty. There may be a possibility that the larvae of M. modiolus now and then settle far to the south of the usual habitat and live there for some time, but are unable to establish themselves. Perhaps some of the smooth-haired smaller specimens found south of Monterey are really young M. modiolus. It is to be hoped that some one will study this problem and make it possible to separate young specimens of the various species of Modiolus.
Occurrence: Living solitary, fastened to rocks, from a few fathoms down to at least 100 fms .
Distribution: Arctic Ocean to Monterey, California; Japan; Atlantic: south to Florida, and the Mediterranean.

Modiolus americanus (Leach) 1815

Plate 6, figs. 27-28; text-fig. 56
Modiola americana Leach, Zoological Miscellany, vol. 2, 1815, p. 32, Pl. 72, fig. 1.
Syn.: Modiola tulipa Lamarck 1819.
Holotype: British Museum?
Type loc.: ?
Remarks: One small specimen from Ecuador with a total length of 14.5 mm seems to be very close to this species. The shell is whitish but furnished with six or seven violet radiating striae starting just behind the white irregularly rounded prodissoconch. The anterior margin and the posterodorsal angle are broadly rounded. The periostracum is yellowishwhite with fine hairs and adhering particles of shells and sand. The byssus is silklike, yellow.

Another specimen, from Bahía de Santa María, Baja California, with a total length of 29 mm , is brownish-yellow with a violet tinge on the umbones. This specimen is of the same form as the small specimen from Ecuador, but lacks the color rays. In the collections of the California Academy of Sciences, there are two samples of a Modiolus identical with the specimens from Bahía de Santa María. They are labelled Mazatlán, Sinaloa, Mexico, beach, no. 27223 (Hertlein collection), maximal length 38 mm , and Bahía de la Magdalena, Baja California, no. 20285 (Orcutt collection), maximal length 42 mm . These two samples are exactly like specimens from Clearwater Harbor, Florida, no. 5835.

Modiolus americanus (Leach) is closely related to the more northern Modiolus modiolus (Linné) but seems to differ in some respects. The shell
usually is thinner and the hairs on the periostracum seem to be broader and weaker than those found in M. modiolus. The posterior part of the mantle seems to be more like M. capax than M. modiolus. A comparison of the soft parts between M. modiolus and M. americanus, and between Pacific and Atlantic specimens, is necessary before the question about the allocation of west American specimens to M. americanus can be settled. These specimens are, as stated above, so like some samples of M. americanus from Florida that it seems impossible to give a description which can be used to separate the Pacific specimens.
Occurrence: The only depth record noted is 5 fms. in Bahía de Santa María.
Distribution: Bahía de la Magdalena, Baja California (perhaps Laguna de San Ignacio, Baja California, M. modiolus E. K. Jordan?) ; Mazatlán, Sinaloa, Mexico; Isla La Plata, Ecuador. In the Atlantic from North Carolina to the West Indies.

Genus AMYGDALUM Megerle von Mühlfeld 1811

Amygdalum Megerle von Mühlfeld, Gesell. Naturf. Freunde Berlin, vol. 5, 1811, p. 69.
Syn.: Modiella Monterosato 1884.
Type of genus: Amygdalum dendriticum Megerle von Mühlfeld 1811 $=$ Mytilus arborescens Chemnitz 1795 (monotypic).
Remarks: The short generic diagnosis and the reference to Chemnitz, Pl. 198, figs. 2016 and 2017, clearly identify this genus. It is characterized by the thin modioliform shell, which is rather flat and furnished with a shining periostracum. The posterodorsal part is usually more or less spotted with white or gray, while the anteroventral side is uniform, sometimes blotched with yellow. Green colored species seem not to belong to this genus. The resilial ridge is very thin and apparently compact ; the nymphae are weak.

The anterior adductor is elongate ; the posterior adductor is small and round, placed high in the posterior part of the shell. The anterior retractor is slender and fastened in the umbonal cavity. The posterior retractors have a thin anterior branch and a more solid posterior branch fastened to the shell above the adductor. All retractors seem to go to the byssal gland (cfr. Pelseneer, 1911, pp. 17-18, Pl. 4, fig. 10; Pl. 5, fig. 1). The mantle margins are simple and a short septum separates the branchial part from the anal opening. The animal builds a nest of mud and sand particles held together by fine byssus threads.

This genus comprises species from deeper water apparently not closely related to Modiolus, perhaps closer to Mytella. As the species occur in all oceans and as the specific differences seem to be small, there has been a tendency to put all specimens in two species of world wide distribution. This seems not to be justified. There is a slight but distinct difference between the Atlantic Amygdalum politum (Verrill and Smith) in Verrill 1880 and the Pacific Amygdalum pallidulum (Dall) 1916 in the color and spots on the dorsal part. The Atlantic Amygdalum dendriticum Megerle von Mühlfeld 1811=arborescens (Chemnitz) 1795, is broader posteriorly like the broader Pacific species, and is furnished with markings of a pattern different from the narrower Pacific species Amygdalum beddomei Pettard and from species close to A. beddomei found on the west coast of America between Isla Gorgona, Colombia, and Payta, Peru. These specimens are here supposed to constitute an unrecognized species very close to but not identical with the Tasmanian A. beddomei. Key to the west American species:

Shell much higher posteriorly than anteriorly;
white lines parallel to dorsal margin and
scattered white spots on a hyaline shell on the posterodorsal part
pallidulum (Dall)
Shell slightly higher posteriorly, grayishbrown triangular spots and irregular blotches on the posterodorsal part
americanum n.sp.

Amygdalum pallidulum (Dall) 1916

Plate 8, fig. 36 ; text-fig. 60
Modiolus pallidulus Dall, Proc. U. S. Natl. Mus., vol. 52, 1916, p. 404. Holotype: U. S. National Museum. Cat. no. 212746.
Type loc.: Off San Luis Obispo Bay, California; 77 fms.
Remarks: The shell is elongate and rather narrow, with the nearly straight dorsal and ventral margins forming an angle of about 30°. The umbones are placed slightly behind the rounded anterior margin, which shows faint radiating lines on the lunular part. The posterior margins are evenly rounded. The anterior and central areas are opaque, grayishwhite with yellow stains; the dorsal and posterior areas are translucent and furnished with white markings, which form longitudinal stripes dorsally and rhomboidal meshes, which sometimes become partly obsolete, on the central and posterior parts. The muscle scars are very indistinct on the thin shell, but the muscles are easily seen in specimens with the soft parts.

The largest specimen (1012-39) measures 21.5 mm in length, 11.9 mm in height, and 6.1 mm in diameter.

This species is very close to Modiolus (Amygdalum) sagittatus Rehder 1935 ; from off Florida, the only differences seem to be the narrower anterior part and the more convex ventral margin. Several specimens had small commensal crabs (Pinnotheres) in the mantle cavity.
Occurrence: A. pallidulum has a wide bathymetric range, as it is recorded taken alive by shore collecting and down to 210 fms . Usually the bottom consists of mud or fine sand, where the species lives in a "nest" made of fine byssal threads and mud particles. The Hancock material extends the distribution from Acapulco, Mexico, south to off the coast of Colombia. Distribution: Off Bodega Head, California, to off the coast of Colombia, SW of Isla Gorgona ($\left.1^{\circ} 02^{\prime} 30^{\prime \prime} \mathrm{N}, 81^{\circ} 12^{\prime} \mathrm{W}\right)$.

Amygdalum americanum new species

$$
\text { Plate 8, fig. } 37
$$

Diagnosis: The shell is thin but not translucent, elongate, with the umbones close to the anterior end. The posterior part is broader than the anterior, but the dorsal and ventral margins form only a small angle when continued forward. The prodissoconch is large, colorless or whitish, shining and distinctly set off from the rest of the shell. The anterior margin is rounded and slopes evenly to the ventral margin; the posterior margin is truncate, with rounded dorsal and ventral angles. The sculpture consists of fine concentric growth lines, more irregular ventrally; the periostracum is yellowish, the anterior and ventral parts being of a uniform yellowish-white color; in the upper part, fine hyaline lines run from the umbo backward, where they become obsolete; and some very fine brownish lines cross the growth lines toward the ventral margin in the anterior part. Grayish-brown triangular spots give a speckled appearance to the posterior and hinder dorsal parts of the shell. Some spots form irregular blotches along the dorsal margin, or bandlike figures toward the ventral margin. These rather variable color spots are not seen in small specimens, but in them the hyaline lines are very distinct. The interior is white and margaritaceous, with fine radiating striations; the muscle scars are indistinct, but the muscles are placed the same way as in A. pallidulum. The posterior adductor is slightly larger, and the anterior adductor is closer to the umbones. The foot is placed in the anterior third of the shell, the byssal gland small. The mantle margins are thickened in the posterior branchial part and they and the septum are speckled with
small brownish spots. The anal opening has folded margins which seem to form a short siphon. The gonads are dorsal.
Holotype: Allan Hancock Foundation. Length, 21 mm ; height, 10 mm ; diameter, 6 mm .
Type loc.: 409-35, Isla Gorgona, Colombia; 20 fms .
Remarks: This species is very close to Amygdalum beddomei Pettard (Iredale, 1924, p. 197, Pl. 35, fig. 21). The posterior margin, however, is more truncate in Amygdalum americanum and does not show the long, rounded posterodorsal curve which seems to be typical in A. beddomei. The darker markings are also different, according to Iredale's figure. Lamy (1936) records Modiolus (Amygdalum) arborescens (Chemnitz) from Payta, Peru; but it seems reasonable that Lamy had specimens of Amygdalum americanum, as there is no other record of Modiolus arborescens from the Pacific coasts of America. Two examples of this species from Bahía de Manzanilla are preserved in the San Diego Museum of Natural History.
Occurrence: This species seems to prefer shallower water than does Amygdalum pallidulum, as it is taken alive between 2 and 20 fms , on muddy or sandy bottom. There were no traces of a nest like that of A. pallidulum, but a nest is easily lost during the sifting of the material. Distribution: Recorded from Bahía Tenacatita, Mexico, south to Isla Gorgona, Colombia, or Payta, Peru (Lamy).

Genus LIOBERUS Dall 1898

Lioberus Dall, Trans. Wagner Free Inst. Sci., vol. 3, part 4, 1898, p. 805. Type of genus: Modiola castanea Say 1822 (orig.).
Remarks: Dall's diagnosis is short. As a group (section or subgenus) of Modiolaria Beck, the following diagnosis is given: "Shell with the radial sculpture obsolete or absent; branchial siphon equal or nearly equal to the anal, both much elongated."

Though the form and smooth surface give the shells a superficial resemblance to Modiolus, the long siphons show that the group has other affinities. It seems safest to treat the group as a separate genus until more is known of the relationship to the genus Musculus Röding.

Lioberus castaneus (Say) seems to be at least superficially like some other species usually referred to Modiolus, e. g., Modiolus elongatus (Swainson) (cfr. Pelseneer, 1911, p. 18, Pl. 4, fig. 8; Pl. 5, fig. 12), which perhaps may be found to belong to Lioberus. Volsella salvadorica Hertlein and Strong is at least tentatively referred to Lioberus because of the anatomy.

Lioberus salvadoricus (Hertlein and Strong) 1946

Plate 8, fig. 38 ; text-figs. 61-62
Volsella (Volsella) salvadorica Hertlein and Strong, Zoologica, vol. 31, part 2, 1946, p. 73, Pl. 1, figs. 7 and 11.
Holotype: California Academy of Sciences. Paleo. type collection.
Type loc.: Off La Libertad, El Salvador; 25 m.
Remarks: One small (9 mm) dried specimen allowed a superficial inspection of the anatomy after it had been soaked in hydroxide for several hours. The most significant result was the observance of the long siphons, of which the branchial, with a ventral opening, has the same length as the anal siphon. The anterior retractor was placed well before the umbo; the posterior retractors and the adductor were elongate and placed in a curve in the anteroventral angle.

The shell shows distinctly raised concentric lines on the anterior part, which are also visible on the inside. This sculpture is not mentioned in the original description but is visible on the figure of the type. The posterior part is covered by a filthy mass of mud particles held together by fine threads. There seem to be no hairs on the periostracum, so this covering may be the remnants of a nest. The anterior margin is distinctly grooved.
Occurrence: Dredged from 2 to 16 fms. The bottom consisted of mud, sand, and shells.
Distribution: From Bahía Cocos, Boca de Culebra, Costa Rica, north to off La Libertad, Salvador.

Genus MUSCULUS Röding 1798

Text-fig. 63
Musculus Röding, Museum Boltenianum, Part II, 1798, p. 156. Syn.: Modiolaria Beck in Robert 1838, 1840.
Type of genus: Mytilus discors Linné 1767 (subsequent designation by Iredale 1915).
Remarks: This genus is characterized by the anterior adductor being placed before the umbones and the posterior retractors being continuous and united with the posterior adductor. The extensile posterior part of the mantle forms a long anal siphon, with the lower branchial opening nearly of the same length. For the anatomy, see Pelseneer, 1911, pp. 19-20, Pl. 5, fig. 5.

The shell is typically radially sculptured in the anterior and posterior part, without radiating sculpture in the middle. The valves are rather flat, without a distinct keel, but the posterodorsal part is separated from the rest of the valve by a more or less pronounced furrow.

Fig. 60. Amygdalum pallidulum (Dall). Santa Cruz Island, California. Adductor and retractor muscles.
Fig. 61. Lioberus salvadoricus (Hertlein and Strong). Bahía Cocos, Costa Rica. Note the place of the anterior retractor distinctly before the umbo.
Fig. 62. Lioberus salvadoricus (Hertlein and Strong). Bahía Cocos, Costa Rica. The siphons, showing that the branchial siphon, not closed ventrally, is of the same length as the anal siphon.
Fig. 63. Musculus discors (Linné). Ireland. Arrangement of muscle scars.
Fig. 64. Gregariella coarctata (Carpenter). Laguna de Scammon, Baja California. Posterior part seen from behind.
Fig 65. Gregariella chenui (Recluz). Seal Beach, California. A branched periostracum hair.

Species with a quite different anatomy have, because of the form and sculpture, been placed in the genus Musculus. These species, e. g., M. marmoratus (Forbes), M. impactus (Hermann), M. cumingianus (Reeve), M. lebourae White, are more inflated than the typical Musculus, and the arrangement of the retractor muscles is quite different. (For the anatomy of M. marmoratus, see List, 1902, Pl. 20, figs. 4-5 ; and for that of M. lebourae, see White, 1949, p. 47.) The anterior retractor is like Musculus, but the posterior retractors have a strong, elongated branch fastened along the dorsal margin and a single slender branch fastened above the posterior adductor.

At least two of these species live in a test of Ascidia (M. marmoratus and M. lebourae). These species certainly should be removed from the genus Musculus and placed in a separate genus. Swainson, 1840, p. 385, described Lanistes (as of Humphreys) with one species, Mytilus discors (Enc. Méth. 204, f. 5), which is Musculus impactus (Hermann) 1782. Unfortunately Lanistes is preoccupied by Montfort 1810. Gray, 1847, gave a new name Lanistina to replace Lanistes Swainson, and this name seems to be valid for the species of the Musculus impactus type. But Gray in 1843 had used the genus Modiolarca for impacta and if this is not a misprint for Modiolaria, it antedates Lanistina by four years. Until this question is solved, it seems best to use Lanistina Gray 1847. Whether species belonging to Lanistina occur on the west coast of America is not proved, as the record of Musculus marmoratus (Forbes) from Puget Sound seems doubtful.

Many species and varieties of Musculus are recorded and described from the Arctic Seas, the Bering Sea, or to the north of California, but two species only are found along the coasts of California. Both seem to be rare. M. senhousei (Benson) is introduced.
Key to the west American species:

1. Shell thin, green colored with faint radiating striae posteriorly senhousei (Benson) Shell more solid, olive to blackish with distinct posterior striae 2
2. Sculpture on the median part of the shell irregularly concentric, color olivaceous with silky lustre olivaceus Dall Median part of the shell smooth, blackish
protractus Dall

Musculus senhousei (Benson) 1842

Modiola senhousia Benson, Ann. and Mag. Nat. Hist., vol. 9, 1842, p. 489.

Syn.: Modiola senhausii Reeve 1857.
Modiolus senhousei Lamy 1936.
Brachyodontes senhausi Jukes-Browne 1905.
Holotype: British Museum.
Type loc.: Chusan, China.
Remarks: This species, generally considered to be a Modiolus, has the characters typical of the genus Musculus, e. g., the anterior retractors
before the umbones; radiating striations on the anterior part; the lunule with crenulated margin; faint but distinctly visible radiating striac on the posterior part ; and crenulations along and behind the ligament.
Occurrence: According to Allyn G. Smith (19+4), this species is found in the San Francisco Bay area. It was later collected by Dr. G. D. Hanna at Coyote Point, San Francisco Bay, California, March 12, 1949, according to samples in the collection of Dr. Howard H. Hill. Apparently M. senhousei has been introduced into San Francisco Bay with shipments of Japanese oysters.
Distribution: San Francisco Bay (introduced) ; Japan, China.

Musculus olivaceus Dall 1916

Plate 8, fig. 39
Musculus olivaceus Dall, Proc. U. S. Natl. Mus., vol. 52, 1916, p. 405. Holotype: U. S. National Museum. Cat. no. 210790.
Type loc.: Off Bering Island; 10 fms .
Remarks: This species has ten or eleven anterior radial ribs which gradually become weaker; and many posterior ribs which are not bordered in front by a furrow, but increase in strength backward until the ribs are slightly broader than the interspaces. The fine concentric threads cross the interspaces and give the median part an irregular concentric sculpture. The margins are crenulated according to the sculpture; and below the umbo are four strong toothlike crenulations. The ligament is short, the prodissoconch is whitish and unsculptured, and the periostracum is olivaceous with a silky lustre. Maximal length, 11 mm .
Occurrence: Occurring in moderate depths, nature of bottom and if nest-building unknown.
Distribution: Bering Sea to Catalina Island, California.

Musculus protractus Dall 1916

Musculus niger protractus Dall, Proc. U. S. Natl. Mus., vol. 52, 1916, p. 405.

Holotype: U. S. National Museum. Cat. no. 222017.
Type loc.: North of Nunivak Island, Bering Sea; 9 fms .
Remarks: This species, which originaly was described as a variety of
M. niger Gray but is considered a separate species by Oldroyd (1924) and Keen (1937), is more inflated and elongate than young specimens of M. niger. The median area is described as being smooth and blackish.

Length, 13 mm . There are no specimens in the Hancock collections.
Occurrence: Moderate depths, the bottom in the type locality consisting of gravel.
Distribution: Nunivak Island to Monterey, California.

Genus GREGARIELLA Monterosato 1884

Gregariella Monterosato, Nomenclatura Generica e Specifica de alcune Conchiglie Mediterranee, 1884, p. 11.
Syn.: Botulina Dall 1889.
Trichomusculus Iredale 1924.
Tibialectus Iredale 1939.
Type of genus: Modiolus sulcatus Risso 1826 (non Lamarck 1805, 1819)
$=$ Modiolus barbatellus Cantraine $1835=$ Modiola opifex Say 1825 (subsequent designation by Crosse 1885).
Remarks: There seems to be no difference between Botulina Dall, Trichomusculus Iredale, Tibialectus Iredale, and Gregariella, and the first three mentioned genera are considered to be synonyms. The original diagnosis in Italian says that one third of the valve is smooth, two thirds decussate, the periostracum hairy; the hinge with rudimentary oblique teeth, and the dorsal margin crenulated. The sculpture of Gregariella is slightly unlike that of Musculus, as the first posterior radiating striae are not continued to the ventral margin but stop gradually on the middle part. The mantle margin is smooth, the posterior part forming a branchial siphon open ventrally and an elongate anal siphon. The anterior retractor is before the umbo.
Dall (1889) introduced the name Botulina as a section of Modiola, without a description, and gave Modiola opifex Say as the only species. (Say described this species in 1825 from specimens found embedded in sand on the valve of a Pecten, which he named nodosus Linné, though he said that the shells, which were presented to the Academy of Natural Sciences in Philadelphia by the U. S. Navy, came from the Island of Minorca. One should suppose that the reference to this locality is more reliable than a species name, and the P. nodosus of Say might be a Pecten maximus Linné.) Modiola opifex Say is also mentioned by Hanley (1842-56, p. 239) as from Minorca. Philippi (1847) gave a new description of ?Modiola opifex Say, with a good figure, from a specimen obtained in Brazil by Kröyer. Philippi was not sure that his species with long, branched hairs on the posterior keel was the same as Say's, because Say did not mention this distinct and characteristic periostracum. The specific name opifex Say has nevertheless been used since for the east

American shell described by Philippi (not Modiola opifex (Say) Verrill and Bush, 1900, which is Modiola divaricata (Philippi)). If the locality for M. opifex is correct, and it must be, this name should be used for the Mediterranean species, with Modiolus sulcatus Risso 1826 (non Lamarck 1805), Modiolus barbatellus Cantraine 1835, Modiola petagnae Scacchi 1836, and Modiola costulata Philippi 1836 as synonyms. The Mediterranean species has the same branched hairs on the periostracum as described by Philippi for his Modiola opifex but, until they are proved conspecific, the oldest name, apparently Mytilus chenui Recluz 1842, must be used for the east American species.

The common west American species has been named Modiola opifex Say or Modiolaria denticulata Dall 1871. What M. denticulata Dall really is, is difficult to tell. After a careful study of the description and comparison with specimens of the common west coast Gregariella, there seems no other solution than to consider Modiolaria denticulata Dall another larger, differently formed species of Gregariella; but only a study of the type can solve the question. Whether the west American species is conspecific with the Atlantic one has not been proved, but they are at least closely related to each other. Therefore chenui Recluz 1842 is used as the specific name. The other more southern species, Crenella coarctata Carpenter, is likewise very close to Modiola divaricata Philippi $=$ Mytilus coralliophagus (Gmelin), from the Atlantic.

The west American species of Gregariella, except denticulata, are easily separable.
Key to the west American species:
Sculpture forking along the distinct keel,
hairs on periostracum smooth
coarctata (Carpenter)
Sculpture consisting of radial lines crossed
by incremental lines, keel weak, hairs on
periostracum branched
chenui (Recluz)
Gregariella coarctata (Carpenter) 1856
Plate 9, fig. 48 ; text-fig. 64
Crenella coarctata Carpenter, Catalogue of the Reigen Collection of Mazatlan Mollusca, 1856, pp. 123-124.
Holotype: British Museum.
Type loc.: Mazatlán, Mexico (here designated).
Remarks: Carpenter's description leaves no doubt about this species, which is credited to Dunker in the literature. It is very close to Modiola divaricata Philippi 1847 from the West Indies, which is supposed to be
identical with Mytilus coralliophagus Gmelin, based on Pl. 84, fig. 752, of Chemnitz. The radial sculpture on the posterior part is divaricating along the keel, the anterior radial sculpture is very distinct, the umbones anterior, and the hairs on the periostracum on the keel are fine and dense without branches.
Occurrence: Carpenter says that this species is found burrowing in the shells of Spondylus calcifer and Murex regius. Depth records are from 2 to 9 fms . The Hancock material extends the distribution considerably. Distribution: Laguna de Scammon, Baja California, to Isla Taboga, Panama; the Galapagos Islands.

Gregariella chenui (Recluz) 1842

Plate 8, fig. 40 ; text-fig. 65
Mytilus chenui Recluz, Revue Zool., vol. 5, 1842, p. 306.
Syn.: Modiola opifex auct. non Say 1825.
Botulina denticulata auct. non Dall 1871.

Holotype: ?

Type loc.: Brazil.
Remarks: Shell white, small, with the umbones anteriorly placed, of a broadly oval form with sloping curved anterior and posterior margins, broadest in the posterior half. Periostracum yellowish with long branched hairs on the posterior part. Sculpture consisting of a few radial anterior striae, a median part without radial sculpture, and distinct radial striae on the posterior part, the first not reaching to the ventral margin, the dorsal ones bent backward. The radiating striae crossed by distinct but somewhat irregular concentric lines, giving the posterior part a decussated sculpture. The anterior dorsal margin somewhat thickened and crenulated ; the posterior dorsal margin with strong crenulations which become smaller on the posterior margin and hinder part of the ventral margin ; the middle part of the ventral margin smooth. The ligament internal and descending backward, supported by a distinct nymphae.

As stated earlier, the west American species seems to be identical with the east American one described and figured by Philippi (1847) as ?Modiola opifex Say. There might be some uncertainty as to the oldest name for this species. If Modiola opifex Say, or the Mediterranean species, should turn out to be the same as the species from Brazil, which is very improbable as the sculpture is different, then M. opifex Say could be used for the west American species too. Until they are proved conspecific, the name chenui Recluz seems to be the oldest one available. Occurrence: The Hancock collections contain many samples of dead
specimens, while only a few seem to have been taken alive, in depths ranging from 16 to 50 fms . Including the valves, of which many are fresh, with the periostracum, the distribution is extended very far south in comparison to what was hitherto known.
Distribution: Monterey, California, south to Bahía de la Independencia, Peru.

Gregariella denticulata (Dall) 1871
Modiolaria denticulata Dall, Amer. Jour. Conch., vol. 7, 1871, p. 154.
Holotype: U. S. National Museum.
Type loc.: Acapulco, Mexico.
Remarks: As discussed previously, this species is at present impossible to interpret and is listed here in the hope that future students may be able to solve the puzzle. Dr. Rehder has kindly informed me that the type is a Gregariella. It might therefore be a synonym of Gregariella chenui (Recluz).
Distribution: Acapulco, Mexico.

Genus CRENELLA Brown 1827

Text-fig. 69
Crenella Brown, Illustrations of the Conchology of Great Britain and Ireland, 1827, Pl. 31, figs. 12-14.
Syn.: Stalagmium Conrad 1833.
Myoparo Lea 1833.
Nuculocardia Orbigny 1845.
Type of genus: Mytilus decussatus Montagu 1808 (monotypy).
Remarks: This genus comprises small inflated species with radiating sculpture, a thickened and striated hinge, a sunken ligament, and a finely striated and thickened dorsal margin. Otherwise the margins are crenulated corresponding to the sculpture. The foot (text-fig. 69) is long, slender, with a thick apex. The posterior retractor muscles are relatively strong and fastened to the valves in connection with the posterior adductor. The anterior retractor could not be observed and must be very weak.

The sculpture of typical species of Crenella can be separated into three areas: the anterior and the posterior areas have more or less unilateral bifurcation, the middle area has undivided or bifurcate sculpture.

There seem to be only two species on the west coast of America, both extremely variable in outline and in the characters of the hinge, which change during the growth of the specimens (Bernard, 1898). The northern species, which has been named Crenella decussata (Montagu), is
probably the northern west coast species, and the more southern species can, as far as I am able to decide, not be separated from the Caribbean species described by Orbigny as Nuculocardia divaricata. In the area where these two species overlap in their distribution, the southern species seems to be much more like the northern and not typical. The separation of these species is therefore sometimes very difficult without large series for comparison, and a thorough revision is highly needed for Crenella, as for so many other mytilid genera.
Key to the west American species:
Sculpture fine, with narrow interspaces, narower than the ribs, which on the central part bifurcates in an arrowlike manner; inflated, elongate when full-grown, hinge strong, color white
divaricata (Orbigny)
Sculpture coarse with interspaces as wide as or wider than the ribs, less inflated, more
rounded form even when full-grown; hinge weaker; color more grayish-yellow
decussata (Montagu)

Crenella divaricata (Orbigny) 1853

Plate 8, figs. 42, 44
Nuculocardia divaricata Orbigny, Hist. Phys., Pol. et Nat. de l'île de Cuba. Mollusques, vol. 2, 1853, p. 311, Pl. 27, figs. 56-59.
Syn.: Crenella inflata Carpenter 1864.
Crenella ecuadoriana Pilsbry and Olsson 1941.

Holotype: ?

Type loc.: Cuba.
Remarks: Specimens from the Caribbean are impossible to separate from specimens from off Central America, which therefore must be considered to belong to the same species. Crenella inflata Carpenter 1864 seems to be based on specimens of C. divaricata (Orbigny) with a strong hinge; and Crenella ecuadoriana Pilsbry and Olsson 1941 represents, as far as I can decide, an elongate specimen of C. divaricata (Orbigny). One character, which usually is easily seen and which separates C. divaricata from C. decussata, is the peculiar way the ribs on the central part of the disc branch, one set within the other, with the points toward the umbones.

Valves which must be referred to C. divaricata are found along the coasts of Baja California north to San Miguel Island, California, sometimes together with valves of C. decussata. I am unable to decide whether C. divaricata lives so far to the north, as the few living specimens in the material are all C. decussata.

Occurrence: Valves have been obtained in depths ranging from 2 to 250 fms. As no living specimens are preserved in the Hancock material, the depth ranges of this species cannot be stated.
Distribution: Records of valves are from Callao, Peru, north to San Miguel Island, California, including the Gulf of California.

Crenella decussata (Montagu) 1808
Plate 8, figs. 43, 45
Mytilus decussatus Montagu, Testacea Britannica, Suppl., 1808, p. 69. Holotype: British Museum.
Type loc.: Scottish coast.
Remarks: Whether the Pacific specimens really belong to the Atlantic C. decussata (Montagu) is very difficult to decide. Specimens from northern Norway seem to be more coarsely sculptured and to have a still weaker hinge than specimens from the California coast. The name decussata has been in use for Pacific specimens for many years, and they certainly are very closely related to the Atlantic species.
Occurrence: Living specimens are recorded in depths from 5 to 144 fms , from a bottom of sand or mud.
Distribution: Valves are found from Canal de Dewey, Baja California, northwards, while living specimens are recorded from San Clemente Island, California, north to Alaska.

Genus SOLAMEN Iredale 1924

Solamen Iredale, Proc. Linn. Soc. New South Wales, vol. 49, 1924, p. 198.

Type of genus: Solamen rex Iredale 1924 (monotypic).
Remarks: In the diagnosis, Iredale says that the anterior margin is lower and more sinuate than the posterior, but his figures of S. rex (Pl . 33, fig. 15 ; Pl. 35, fig. 2) seem to show the opposite condition. Arcoperna recens Tate 1896 is very close to S. rex.

The common and well known species Crenella columbiana Dall 1897 seems to have its place in the genus Solamen, though the young specimens have distinctly thickened and crenulated margins below the umbones. Crenella megas Dall 1902 seems to have been based on an extremely large specimen of C. columbiana, even though the type locality of C. megas is much farther south than C. columbiana is reported to occur. Crenella rotundata Dall 1916 is perhaps founded on a young specimen of C. columbiana, but a careful study of the types is needed before C. megas and C. rotundata can be considered synonyms of C. columbiana with certainty.

The genus Solamen, which perhaps will be shown to be a subgenus of Crenella Brown, comprises two Australian species, one species from Java (Solamen sibogae Prashad 1932), and three Japanese species; and perhaps a few other species of Crenella should be referred to this genus.

Solamen columbianum (Dall) 1897

Plate 8, fig. 46 ; text-figs. 66-68
Crenella columbiana Dall, Bul. Nat. Hist. Soc. British Columbia, vol. 2, 1897, p. 4, Pl. 1, figs. 3 and 5.
Syn.: ?Crenella megas Dall 1902.
?Crenella rotundata Dall 1916.
Holotype: U. S. National Museum. Cat. no. 107630.
Type loc.: Chernoffski, Unalaska; 109 fms.
Remarks: This species and perhaps also the type of the genus, S. rex Iredale, have fine radiating striae separated into three areas, as in Crenella, by slight differences in the sculpture. The anterior part is separated from the main part of the shell by a smooth narrow stripe ; the radiating striae anterior to this smooth stripe fork out from it. There is also an irregular, partly smooth stripe on the posterior part, with lateral forking of the striae anterior to it. The radiating striae on the median part do not fork, but have some striae in the interspaces in the younger parts of the shell.

The short ligament is not situated in an inwardly sloping groove, but placed on thin nymphae with a resilial ridge. Margins are most conspicuously crenulated in the anterior part, with no thickening below the umbo. There are tooth like crenulations in larger specimens. Specimens with a length of 6 mm have the same vertically thickened, striated subumbonal part found in species of Crenella, and can be separated from them only by the finer striae and thinner shell. The form is round in small specimens, with a shining white prodissoconch. As the animals grow, they become more elongate and the posterior part is attenuated (megas Dall). One large specimen measures 21.5 mm in length, 15 mm in height, and 14.2 mm in diameter, and the largest specimen (broken) has a length of at least 22 mm . Dall says the extreme length is 16 mm .

The figure of a 15 mm specimen (Dall, 1897) is not much like the figure (Dall, 1925, Pl. 9, fig. 1) of a young shell, which seems to have broader ribs with linear interspaces. Young shells, however, look rather different from larger ones, for the white color and less inflated form make the ribs look broader. But as the large, white, smooth prodissoconch is the same size, it seems reasonable to consider them all the same species.

The shells usually have mud and sand particles adhering to the surface, and on both sides of the umbones there is a ferruginous coating. The anatomy of this species is most interesting and unlike that of other mytilids. The anterior adductor is very narrow and elongate and placed along the extreme border of the anteroventral angle. The posterior adductor is seen as a round dark spot in the posterodorsal part, a little inside the shell margin. The foot is strong, cylindrical, with a swollen apex furrowed on the posteroventral side and showing a median constriction. There seems to be no open furrow on the posterior part of the foot proper and no traces of a byssus or a byssal gland. Two short anterior retractors are fastened to the valves in the umbonal cavity, and thin muscle threads extend backward to the posterior adductor and are fastened to the shell or the adductor on the sides. There are no muscles for the byssus, and the foot retractors are astonishingly weak. The form of the foot indicates that the animal moves in the mud by anchoring the foot and inflating the apex like a balloon; then the animal is pulled forward by the weak muscles. The mantle margins are united in the anterior half of the ventral side. The ventral opening is short and is closed posteriorly by the septum, which is striated longitudinally. Just before the septum opens to a relatively large anal opening, the margins are furnished with a row of small papillae. The gonads are placed on the dorsal side.
Occurrence: This species is found in depths varying from 16 to 290 fms. The bottom usually consists of mud of various types or of sand; also gravel is reported from a few localities.
Distribution: The distribution has been given as from the Aleutian Islands to San Diego, California. The southern limit is now moved to Isla Clarión, Mexico. It is also found in the Gulf of California. If we include megas Dall, the southern limit is the Bahía de Panamá.

Genus BOTULA Mörch 1853

Botula Mörch, Catalogus Conchyliorum quae reliquit D. Alphonso d'Aguirra \& Gadea, comes de Yoldi. Fasc. secundus. Acephala, 1853, p. 55.

Type of genus: Mytilus fuscus Gmelin 1791 (Subsequent designation by Dall, Bartsch, and Rehder 1938).
Remarks: This genus is rather different from all other groups studied, as the anterior retractor is placed on the margin of the shell just below the umbones. The posterior adductor is small and the posterior retractor
leaves a small scar above the adductor. There are traces of siphonal retractor muscles in the middle of the valve and the siphons are long, even the branchial one, with the septum ending below the branchial siphon in three branched flaps.

The umbones are incurved; the margin above the ligament and just behind it is finely, transversely striated.

Fig. 66. Solamen columbianum (Dall). Off Pyramid Cove, San Clemente Island, California. Placement of adductor muscles.
Fig. 67. Solamen columbianum (Dall). Off Santa Rosa Island, California. The strong cylindrical foot with apical inflated part, relatively strong anterior retractors and very weak posterior retractors.
Fig. 68. Solamen columbianum (Dall). Off Santa Rosa Island, California, Posterior part seen from behind. Fine papillae on the upper part of the mantle margin which terminates in a heartshaped flap below the anal opening.
Fig. 69. Crenella decussata (Montagu). El Segundo, California. Foot with posterior retractor and adductor.
Fig. 70. Botula fusca (Gmelin). 4 miles N. of Isla Tortuga, Venezuela. Muscle scars. Anterior and posterior adductors are rather large, anterior retractor placed on the anterior margin beyond the umbo, posterior retractor very small and placed above the adductor. Indistinct scars in the middle are formed by the retractors of the siphons.
Fig. 71. Botula fusca (Gmelin). 4 miles N. of Isla Tortuga, Venezuela. The separated anal and branchial siphons are of nearly equal length.
Fig. 72. Botula fusca (Gmelin). 4 miles N. of Isla Tortuga, Venezuela. Branchial siphon in posteroventral view showing the three branched flaps on the septum.
Fig. 73. Adula californiensis (Philippi). Cape Arago, Coos County, California. Muscle scars with the scars for the siphon retractors below the posterior adductor.
Fig. 74. Adula californiensis (Philippi). Cape Arago, Coos County, California. Posterior part of the mantle with the anal siphon and the papillae on the branchial part.
Fig. 75. Adula diegensis (Dall). Bodega Lagoon, Sonoma County, California. Posterior part of the mantle with the anal siphon and the papillae on the branchial part.
Fig. 76. Adula diegensis (Dall). Bodega Lagoon, Sonoma County, California. Posterior part seen from behind.
Fig. 77. Lithophaga (Labis) attenuata (Deshayes). Puerto San Bartolomé, Baja California. Placement of muscle scars.
Fig. 78. Lithophaga (Diberus) canalifera (Hanley). Bahía de Manta, Ecuador. a. Side view with the projecting incrustation. b. Dorsal view of the specimen with the incrustation on the left valve.

Botula fusca (Gmelin) 1791

Pl. 9, fig. 52 ; text figs. 70-72
Mytilus fuscus Gmelin, Systema Naturae, ed. 12, 1791, p. 3359.
Syn.: Mytilus cinnamominus Chemnitz 1785.
Modiola cinnamomea auct. non Lamarck 1819.

Holotype: ?

Type loc.: ?
Remarks: This species, which has been given the name of the West Indian species, was reported by Carpenter (1856) from Mazatlán as Lithophagus cinnamomeus (Chemnitz) and by Strong and Hanna (1930) from Las Tres Marías as Botula cinnamomeus (Chemnitz). As far as is known, these are the only records of Botula from the west coast of America.
Distribution: Mexico. Atlantic: North Carolina to the West Indies.

Genus DACRYDIUM Torell 1859

Dacrydium Torell, Bidrag till Spitsbergens Molluskfauna, 1859, p. 138. Type of genus: ?Mytilus vitrea Holböll in Möller 1842.
Remarks: This genus, erected for the small deep water species from the northern Atlantic, comprises species both from the Arctic and the Antarctic regions. One species, Dacrydium pacificum, is reported by Dall (1916) from the Bering Sea, in 1401 fms . This is the only report hitherto from the west coast of America.

The species of Dacrydium are all small, white, hyaline shells, with anterior umbones, internal resilium, and crenulated anterior margins. The type of the genus has also a thickened support for the anterior adductor. The new species described here seems to have to be placed in the genus Quendreda, which is supposed to be of subgeneric rank.

Subgenus QUENDREDA Iredale 1936

Quendreda Iredale, Rec. Austral. Mus., vol. 19, 1936, p. 271. Type of subgenus: Dacrydium fabale Hedley 1904 (orig.).
Remarks: As is usual with generic names proposed by Iredale, there is no diagnosis. He states only that the species described by Hanley "differs in shape, form, and sculpture from the Spitzbergen shell, the type of Torell's genus." Hedley (1904), in the description of fabale, says: ". . . delicate, concentric growth-lines which rise into ridges on the ventral side. Hinge: a deep chondrophore, flanked by two prominent grooved cardinals." The two grooved teeth and the lack of a thickened
support for the anterior adductor separate this group from the typical species of the genus Dacrydium. Hedley's (1906) other species, Dacrydium pelseneeri from New Zealand, seems not to have the grooved teeth but is otherwise very like fabale. Without knowing the anatomy of the species referred to Quendreda, it is impossible to decide if it should be considered as a subgenus or a synonym of Dacrydium.

Dacrydium (Quendreda) elegantulum new species

 Plate 8, fig. 41Diagnosis: Shell small, hyaline with opaque white spots when fresh, or opaque white when dead and worn, oval, with the umbones anterior. Anterior margin with a broadly curved anteroventral angle, ventral margin straight, posterior and dorsal margins evenly curved. Umbones small, pointed. Periostracum thin, shining, growth lines widely spaced and like fine concentric sculpture, slightly raised anteroventrally; thicker calcareous layers forming radiating irregular bands on the younger parts of the valve, visible also in full grown and dead shells.

Hinge with small, toothlike thickenings of the margins on both sides of the deep-set resilifer beyond the umbo, the ventral "tooth" with three or four, the dorsal with five or six, striae or crenulations, the narrow margin connecting them also finely striated across. Along the dorsal margin the anterior part thickened and distinctly striated across, supporting a weak but distinct deep-set ligament. Muscular scars indistinct, anterior adductor placed close to the anteroventral margin.
Holotype: The Allan Hancock Foundation. One right valve of a young specimen, length, 2.4 mm ; height, 1.4 mm .
Type loc.: Bahía de Gardner, Galapagos Islands (BS 453, Jan. 31, 1934) ; 35 fms.

Remarks: Compared to the Australian Dacrydium fabale, this species is easily recognized by its outline and the opaque radiating spots, as D. (Quendreda) fabale has a concave ventral margin and, as far as known, a uniform consistency of the shell. Most of the material at hand consists of loose valves more or less bored by minute organisms. Two complete but dried specimens were taken in the Galapagos Islands, as was also the fresh valve used as the holotype. The largest valve has a length of 4.5 mm .

Occurrence: Empty valves were taken in depths from 25 to 110 fms. The two living specimens and the type lot were from 25 to 35 fms , where the bottom consisted of rocks or coarse sand.
Distribution: Galapagos Islands; Baja California north to off Redondo Beach, California.

Genus ADULA H. and A. Adams 1857
Adula H. and A. Adams, Genera of Recent Mollusca, vol. 2, 1857, p. 517.

Type of genus: Mytilus soleniformis Orbigny 1846 (monotypy).
Remarks: Adula was described as a subgenus of Perna Adanson $=$ Modiolus Lamarck with the following diagnosis: "Shell elongate, cylindrical, posterior side obliquely truncate, beaks sub-central." Only the type species was included in the new subgenus.

Although the four species here referred to Adula, which in my opinion constitutes a good generic unit, are rather different, they have several characters in common which serve to separate them from other mytilid genera. The elongate form simulates the species of Lithophaga and apparently the species are generally borers, too. They have the anterior byssal retractors fastened before the umbones, and the siphonal prolongations of the posterior part of the mantle are built like those found in Lithophaga. The sculpture of some species and the filthy covering of the posterodorsal triangle are also characters which make them look like a Lithophaga, and the gonads are extended into the mantle just as in that genus. There are, however, other characters typical for these species only. The posterior adductor, which is placed above the middle of the valve, is confluent with the posterior retractor muscles lying mainly in front of the adductor. Below the adductor are seen rather distinct scars of the retractors for the siphonal mantle prolongations. The umbones are placed farther back than in Lithophaga, and the anterodorsal margin is thickened. The crenulations on the margins vary considerably. Three species have distinct crenulations on the anterior margins, two have them also behind the ligament, while one species has completely smooth margins. Radiating sculpture on the lunule is found in two species, but not in the others.

Dall (1921) and other authors have considered Adula to be a subgenus of Botula Mörch; but they are very different and apparently not closely related. The strongly curved umbones and the peculiar place where the anterior retractor is fastened on the anterior thickened margin itself, make the species of Botula look very different from those of Adula.

The differences in the conchological characters of the four species here referred to Adula clearly show how dangerous it is to rely on one character only in separating mytilid genera. It would have been difficult to place diegensis in this genus without seeing the typical form of the pallial siphonal elongations and the same scar of the muscles as was observed in
the other species. These characters alone separate diegensis from the Modiolus group. A. diegensis is free-living, and therefore somewhat different from the other species, but the free-living habit alone is not sufficient to separate a species from its relatives in a genus.

Species of the genus Adula are distributed from Peru to British Columbia, and Japan. The genus is related to Lithophaga Röding, Zelithophaga Finlay, Terua Dall, Bartsch, and Rehder, and perhaps to Botulopa Iredale.
Key to the west American species:

1. Shell with irregular vertical or wrinkled
sculpture, margins without crenulations Shell smooth or with radiating sculpture 2
2. Radiating sculpture on the anterior part and before the keel, margins crenulated
anteriorly and strongly so behind the and before the keel, margins crenulated
anteriorly and strongly so behind the ligament
Shell smooth or with few radiating striae anteriorly, posteriorly curved, with a filthy incrustation
3. Shell elongate, not higher posteriorly than anteriorly, lunule generally without radiating lines
Shell shorter, distinctly highest posteriorly, lunule generally with distinct radiating lines, which form internal ribs
falcata (Gould)

3
californianus (Philippi)

$$
5+x_{1}
$$3

```
soleniformis (Orbigny)
gurng
soleniformis (Orbigny)
```

margins like the smooth species. Two typical specimens in the collections are labelled Bahiá de la Independencia, Peru, and if correct, extend the distribution very far south.
Occurrence: Boring in clay or soft shale.
Distribution: Coos Bay, Oregon, to San Diego, California. Peru?

Adula soleniformis (Orbigny) 1846

Mytilus soleniformis Orbigny, Voyage dans l'Amérique Méridionale, vol. 5, Mollusques, 1846, p. 649, Pl. 85, figs. 17-18.
Holotype: ?
Type loc.: Neighborhood of Payta, Peru.
Remarks: This species, which is the type of the genus Adula, has the anterior retractor slightly before the umbones; a definite keel; and fine radiating lines on the anterior side and before the keel, very strong and riblike on the lunule. The anterior margin is thickened and crenulated; the ventral margin is smooth; the posterior margin is finely striated from the keel to the posterodorsal corner, where the surface is devoid of striation; the dorsal margin has strong, toothlike crenulations from behind the ligament to the posterodorsal corner. The resilial ridge and the nymphae are weak. The muscle scars were not observed (specimen examined, U. S. National Museum, Cat. no. 128635).
Occurrence: This species seems to be rather rare and apparently known only from the type locality. The habitat is unknown.
Distribution: Peru.

Adula californiensis (Philippi) 1847

Plate 9, fig. 50 ; text-figs. 73-74
Modiola californiensis Philippi, Ztschr. f. Malakozool., vol. 4, 1847, p. 113.

Syn.: Adula stylina Carpenter 1864.
Holotype: ?
Type loc.: Vancouver Island, British Columbia, Canada.
Remarks: Shell smooth, usually without radiating sculpture, sometimes with faint traces on the lunule. Anterior margin crenulated at least dorsally, and occasionally with obscure crenulations behind the ligament. Posterodorsal triangle with a filthy incrustation. Posterior third of shell not distinctly higher than anterior third. Byssus strong, in tufts from a main laterally compressed stem. The dorsal siphon with smooth margins and the margins of the ventral siphon furnished with irregular papillae.

Occurrence: Boring in soft shale, but now and then found fastened by the byssus to stones, indicating that this species does not always live as a borer. Generally living in the intertidal zone.
Distribution: Vancouver Island to San Diego, California; Japan.

Adula diegensis (Dall) 1911

Plate 9, fig. 51; text-figs. 75-76
Modiolus diegensis Dall, Nautilus, vol. 24, 1911, pp. 110-11.
Holotype: U. S. National Museum.
Type loc.: San Diego, California.
Remarks: Dall described this species as a Modiolus but said it resembled Adula, though not a borer, and it might possibly be referable to the genus Myrina H. and A. Adams. It seems, however, to have its correct place in the genus A dula.

The shell is smooth except on the lunule, where six radiating folds are seen, being especially distinct on the inside and forming teeth on the anterior margin. The periostracum is often covered by a filthy layer posterodorsally. The anatomy agrees with that of other species of Adula. The posterior extensible part of the mantle is furnished with papillae like those found in Adula californiensis.
Occurrence: Found on mud flats or piling, apparently always free-living. Intertidal.
Distribution: Charleston, Oregon, south to Cabo San Lucas, Baja California. La Libertad, Sonora, Mexico (Lowe collection, San Diego Museum).

Genus LITHOPHAGA Röding 1798

Lithophaga Röding, Museum Boltenianum, Part II, 1798, p. 156.
Syn.: Lithophagus Megerle von Mühlfeld 1811.
Lithodomus Cuvier 1817.
Dactylus Lang 1722, Klein 1753, Mörch 1861.
Type of genus: Lithophaga mytuloides Röding $1798=$ Mytilus lithophagus Linné 1780.
Remarks: Species belonging to this genus are elongate with more or less parallel dorsal and ventral margins, a cylindrical shell, tapering posteriorly, and the umbones near the anterior end. The surface is sometimes irregularly sculptured. Sometimes nearly smooth, but always covered with a strong yellowish to dark brown or blackish periostracum, which never has hairy projections. The surface is often covered by a chalky in-
crustation, generally harder and thicker on the posterodorsal triangle and usually projecting beyond the posterior margin of the valve. The margins are always smooth and there are no toothlike crenulations in the hinge. The lunule is not defined.

The mantle margins are smooth except for the posterior part, which in preserved specimens is folded. The inner folds of the mantle, projecting posteriorly, form siphons, of which the ventral one is open below as is usual in mytilids. There are no visible scars formed by the siphonal musculature. The anterior adductor is elongate and rather large, placed near the margin; the posterior adductor is small and roundish. The anterior retractor of the byssus is fastened before the umbones and separated from the adductor; the posterior retractores pedis et bysii are continuous, small, and weak, and usually fastened above the posterior adductor. The byssal opening is behind the foot, large and with a functional gland, even in large specimens. The foot is small and pointed, with a ventral median furrow. The gonads are found in the mantle on both sides. All species bore in loose rock, corals, or the shells of other mollusks.

The genus Lithophaga has been divided into several "sections," mainly by Dall and Iredale, because of the differences in the chalky incrustation of the valves. These "sections" cannot be given the same value as the other groups of mytilids used in this paper, since there is a great deal of variation even among specimens of one population. It is sometimes very difficult to assign a specimen to a "section" on the basis of the characters given in the diagnosis alone. However, a few groups are useful in the classification, even if they generally do not indicate groups of species with different geographic distribution or those which seem to be genetically related. Small specimens or specimens with the incrustation cleaned off, are nearly impossible to classify.
Key to subgenera:

1. Valves without a calcareous incrustation (Lithophaga s. s.)

Valves with a calcareous incrustation 2
2. Incrustation seen from behind oval and closed and with a vertical internal tube, which has one dorsal and one ventral opening

Stumpiella n. subg.
Incrustation otherwise, always without dorsal and ventral openings
3. The thickened part of the incrustation with irregular wrinkles more or less like a feather or with strong radiating grooves, and projecting distinctly beyond the valve

Incrustation more uniform or the thickened part
smooth or with a shallow divaricate pattern 4
4. The protruding incrustation or the ridges indicating the termination are crossed, generally with that of the right valve the lowest Myoforceps Fischer Incrustation more uniform and alike on both valves without crossing projecting parts 5
5. Projecting part of incrustation generally rather long or ending in a median spine, smooth Labis Dall Projecting part of incrustation, if present, short, surrounding posterior margin of valve Leiosolenus Carpenter

Subgenus STUMPIELLA new subgenus

Diagnosis: Shell with a triangular median area covered with a solid incrustation and bounded by a dorsal and a rather distinct ventral furrow. The incrustation has one dorsal and one ventral ridge terminating posteriorly in sharp angles, and is furnished with irregular wrinkles between the ridges, at least in the median part. The protruding incrustation is closed behind and furnished with one dorsal and one ventral opening connected by an internal channel.
Type of subgenus: Lithophagus calyculatus Carpenter 1856.
Remarks: The description given by Carpenter of his new species does not agree in all details with the three specimens at hand, but the peculiar projection of the incrustation seems to be such a good character that I think these shells can be referred to Lithophaga calyculata safely.

Lithophaga (Stumpiella) calyculata (Carpenter) 1856

Plate 10, figs. 61-63
Lithophagus calyculatus Carpenter, Catalogue of the Reigen Collection of Mazatlan Mollusca, 1856, pp. 124-125 (non calyculatus Hertlein and Strong $1946=$ plumula Hanley).
Type loc.: Mazatlán, Mexico.
Holotype: British Museum.
Remarks: Shell rather high with a distinct dorsal angle, umbones near anterior margin, which is truncately rounded; ventral margin nearly straight, posterior margin concave, bounded by the two sharp angles formed by the protruding ridges of the incrustation. Seen from behind, the incrustation forms an oval closed area with slightly elevated median ridge and circumference; seen from the dorsal or ventral side, the incrustation has openings for a roundish channel passing through it. The dorsal
triangle is bounded by distinct dorsal and ventral furrows and is furnished with a bluish-white incrustation with vertical wrinkles, especially in the median part. Periostracum yellowish to yellow-brown, covered with a loose, granulated incrustation. Inside margaritaceous, posterior adductor relatively large and near posterior margin. Ligament shorter than half the length of the valve.

According to Carpenter, the type specimen measured 0.36 inches in length, 0.14 in height, and 0.15 in diameter. The two specimens from the Mexican islands in this material measure 15 mm by 7 mm and 14.2 mm by 6 mm , excluding the incrustation. The small Galapagos specimen has a length of 6 mm .
Occurrence: Apparently this species has not been obtained by collectors since Reigen did his collecting more than a hundred years ago and picked up the type specimen. It was therefore very interesting to find three examples of this apparently very rare species in the Hancock Collections. The three specimens were obtained on Isla Socorro and Isla Clarion on the shore, and at Isla San Cristobál (Chatham Island), Galapagos Islands, in a depth of 32 fms. The records are too few to allow a discussion of the occurrence of this species, but they seem to indicate an unusual type of distribution.
Distribution: Mazatlán, Mexico, to the Galapagos Islands.

Subgenus DIBERUS Dall 1898

Diberus Dall, Trans. Wagner Free Inst. Sci., vol. 3, 1898, p. 799.
Type of subgenus: Modiola plumula Hanley 1843.
Remarks: Dall (1898) says: "Resembling Myoforceps, but with two or more radial sulci extending backward from the beaks, with the incrustation plume like, arranged in a distinct pattern on the areas between the sulci, and, when projecting beyond the ends of the valves, apposited symmetrically, not alternate and twisted as in the last section."

The most conspicuous character separating species of Diberus from the other species of Lithophaga is the plumelike incrustation on the upper and posterior part of the valves. The anterior byssus retractor is fanshaped where it is fastened to the valves and makes an elongate narrow scar from just behind the umbo halfway down the anterior slope. The posterior retractor scar is, at least in the west American species, placed above the posterior adductor and separated from it.

Iredale (1939) has named two sections from Australia, which seem to be identical with, or very close to, Diberus, viz., Exodiberus, type Lithophaga calcifer Iredale, and Salebrolabis, type Lithophaga divaricalx Iredale.

Subgenus Diberus is recorded from the Lower Miocene, Tampa, Florida (Dall, 1898, "Oligocene"), and the recent species occur in the warm and tropical seas on the east and west coasts of America, the Red Sea east to the Philippine Islands and Australia.

The west American species is well known as Lithophaga plumula (Hanley) 1843, with the variety kelseyi Hertlein and Strong 1946. Reeve, in Conchologia Iconica, has described Lithodomus subula from an unknown locality. The short description and figure 26 of Plate 4 seem to agree completely with the form named kelseyi by Hertlein and Strong. Lithodomus pessulatus Reeve 1857, also described from a specimen without locality, has vertical wrinkles on the anteroventral part of the valves. It will therefore be easily known if it should be found on the west American coast.
Lithophaga canalifera (Hanley) 1843 is considered a Diberus by Lamy (1937) and is here included in this subgenus, although the pattern of the incrustation is different. Lamy (1937) mentions Lithophaga abbotti Lowe in connection with species of Diberus, but according to the description it is not a Diberus.
Key to the west American species:

1. Incrustation with strong radiating grooves without a featherlike pattern canalifera (Hanley)
Incrustation with a featherlike pattern 2
2. Shell rather high, more than 30% of length including incrustation; posterior adductor scar near posterior margin; at most its own length from the margin; incrustation distinctly like a feather with elevated ribs plumula (Hanley)
Shell lower, height about 25% of length including incrustation, posterior end more tapering; posterior adductor distinctly more than its own length from posterior margin; incrustation irregular and lower

$$
\text { Text-fig. } 78
$$

Modiola canalifera Hanley, Catalogue of Recent Bivalve Shells, 1843, p. 239, Pl. 24, fig. 22.

Syn.: ?Lithophaga appendiculata (Philippi) Tomlin 1928.
Holotype: British Museum.
Type loc.: South America.

Remarks: Two small broken specimens from Manta, Ecuador, seem to be referable to Hanley's species, which has not been recorded since it was described. The specimens have a length of 11 mm , including the incrustation, which protrudes beyond the posterior margin for about 1.5 mm ; on the right valve only in one of the specimens and on the left in the other, apparently indicating only the young age. The incrustation is found as two parallel thicker ridges separated by a radiating groove with more irregular sculpture. The anterior and ventral parts are covered with a thin granular incrustation. This species may perhaps be placed in subgenus Labis, but is retained in Diberus until more material is obtained. Tomlin (1928) has listed Lithophaga appendiculata (Philippi) (=bisulcata Orbigny, a West Indian species), from Isla Coiba, Bahía de Panamá, but perhaps his specimens may be referred to Lithophaga (Diberus) canalifera also.
Occurrence: 1 to 12 fms , sand.
Distribution: Panama?; Ecuador; South America.

Lithophaga (Diberus) plumula (Hanley) 1843

Plate 10, fig. 55
Modiola plumula Hanley, Catalogue of Recent Bivalve Shells, 1843, p. 239.

Syn.: Lithophagus calyculatus Hertlein and Strong 1946.
Holotype: British Museum.
Type loc.: Panama, in Spondyli.
Remarks: Carpenter (1857) admits two varieties or forms, a slender one, gracilior, and a shorter one, tumidior. The featherlike incrustation and the muscle scars are typical in both forms. The periostracum generally forms transverse wrinkles on the dorsal side. The largest specimen has a length of 55.8 mm including the projection of the incrustation, or 46 mm without ; but ordinarily the specimens are 20 mm to 30 mm long. The anterior retractor leaves a narrow but very elongated scar commencing just behind the umbo.
Occurrence: The larger part of the specimens were collected in shallow water with corals, some were taken on or in rocks or sand, and a few were found in depths from 14 to 20 fms , where the bottom was stated to consist of sand and shells. All stations were within the known range of distribution, except for the one from Isla Española (Hood Island), Galapagos Islands, where the large specimen, total length 50 mm , was taken. It seems to have been unknown from these islands before.
Distribution: Gulf of California to Peru.

Lithophaga (Diberus) subula (Reeve) 1857

Plate 10, fig. 56
Lithodomus subula Reeve, Conchologia Iconica, Lithodomus, 1857, Pl. 4, fig. 26.
Syn.: Lithophaga plumula kelseyi Hertlein and Strong 1946.
Holotype: British Museum.
Type loc.: ?
Remarks: The differences between Lithophaga plumula and the species which here is named Lithophaga subula, are small but constant. Whether they are considered to be specific or subspecific is a matter of subjective opinion. As far as can be decided from the published short description and figures, Reeve's subula is identical with the subspecies named kelseyi by Hertlein and Strong.

The incrustation, when it is featherlike, is decidedly stronger on the ventral part. Some specimens show the transverse wrinkles of the periostracum more common in L. plumula. The dorsal angle is more pronounced than that of L. plumula, and the form of the shell is decidedly more elongate and lower; but the position of the posterior adductor relative to the posterior margin seems to be the most reliable character.

The largest specimen measures 56.6 mm , including the incrustation. Occurrence: This species is very common along the coast of California to the south of Point Conception and is found on the west coast of Baja California south to Punta Pequeña. It is found living from the shore down to 35 fms . The record from Catalina Island, $350-400 \mathrm{fms}$, must be due to an error, as the piece of cemented broken shells in which the specimens were living has small algae growing on it. In the California Academy of Sciences are preserved specimens from Cosacos River, Alaska. Distribution: Baja California to Point Conception, Alaska.

Subgenus MYOFORCEPS Fischer 1886

Myoforceps Fischer, Manuel de Conchyliologie, 1886, p. 969.
Type of subgenus: Modiola caudigera Lamarck $1819=$ Mytilus aristatus Dillwyn 1817 (monotypy).
Remarks: The diagnosis given by Fischer is very short and contains only one character, the crossed projecting portion of the incrustation. This character generally is sufficient for the recognition of the subgenus. Apparently this subgenus contains only one species, as the two species mentioned by Lamy (1937) in connection with Lithophaga aristata, viz., Lithophaga bipennifer Guppy 1877 and Modiola (Lithodomus) excavata De Folin 1867, seem to be referable to the same widely distributed species.

Lithophaga (Myoforceps) aristata is recorded from the Lower Miocene, Tampa, Florida, by Dall, and from the Pleistocene, Galapagos Islands, by Hertlein and Strong.

Lithophaga (Myoforceps) aristata (Dillwyn) 1817

Plate 10, figs. 53-54
Mytilus aristatus Dillwyn, Descriptive Catalogue of Recent Shells, vol. 1, 1817, p. 303.
Syn.: Modiola caudigera Lamarck 1819, Dall 1898, 1909.
Lithophaga caudatus Gray 1827.
Dactylus carpenteri Mörch 1861.
Lithodomus forficatus Ravenel 1861, Dall 1889.
Holotype: ?
Type loc.: Senegal.
Remarks: Generally specimens of this species are easily recognized by the crossing projections of the incrustation. Sometimes the incrustation has no real projections, the posterior part being truncate, and the typical crossing of the posterior part of the incrustation seems to be absent; but by careful inspection, one will find a thickened ridge on each valve, generally on the ventral side of the right valve. If these ridges had projections, they would cross each other. Among the sixty samples of this species from the west coast of America, only two specimens had the ridge or projection on the dorsal side of the right valve. The form of the shell is rather variable and Carpenter (1857) has named two varieties, gracilior and tumidior. The variations of the outline seem to be caused by the shell being bored into or by other ecological circumstances, and so do not represent different populations.

Carpenter (1857) said his largest specimen measured 1.56 inches. One Hancock specimen from Ecuador (403-35) has a length of 43.2 mm .
The posterior adductor is rather large and closer to the posterior margin of the valve than its own length. The anterior protractor is narrow and relatively short.
Occurrence: Nearly all localities where Lithophaga aristata has been collected are shallow water, from shore to a depth of 5 fms. It was therefore astonishing to see that living specimens were collected at a depth of 165 fms (529-36). This species seems to be a borer of other mollusks and apparently very rarely attacks stone directly. All localities in the Hancock collections of Lithophaga aristata are within the previously known range of distribution of the species.

Distribution: La Jolla, California, to Peru. Atlantic: West Indies, west Africa, Mediterranean; Red Sea; Australia; Japan.

Subgenus LABIS Dall 1916

Labis Dall, Proc. U. S. Natl. Mus., vol. 52, 1916, pp. 405-406.
Type of subgenus: Lithophaga attenuata Deshayes 1836 (monotypy).
Remarks: This "Section" was described for attenuata alone, characterized by the "smooth appendage of which the distal end is internally flattened and somewhat separated from the appendage of the opposite valve, the ends being rounded." It seems useful to include Lithophaga cumingiana (Reeve) 1858 and Lithophaga peruviana (Orbigny) 1846 in the same subgenus, as proposed by Lamy (1937). The main characteristic of Labis will then be the smooth appendage projecting beyond the posterior margin of the valve. The anterior retractor seems also to be shorter and broader than in the other Lithophaga species.

Species of this group are restricted to the west coast of Central and South America and Australia, where Iredale's (1939) section Doliolabis seems to be identical.
Key to the west American species:
Projecting posterior part of the incrustation long, rounded apically attenuata (Deshayes)
The projecting posterior part of the incrustation short, with a median spine
peruviana (Orbigny)

Lithophaga (Labis) attenuata (Deshayes) 1836

Plate 10, fig. 57 ; text-fig. 77
Modiola attenuata Deshayes, Animaux sans Vertèbres, ed. 2, vol. 7, 1836, p. 28.
Syn.: Lithodomus inca Orbigny 1846.
Holotype: ?
Type loc.: Peru and Chile.
Remarks: The incrustation on the ventral side is sometimes arranged in vertical rows; the posterior projection of the incrustation is sometimes long, up to 20 mm , sometimes very short, but always without a median ridge ; the inside of the projection is more or less hollowed out, forming a median cavity when the valves are closed. The median incrustation often has a pattern of radiating but not divaricating lines and the edges of the projecting part are irregularly granulated. There seem to be two different forms, an elongate slender one and a shorter thicker one, which apparently occur in different localities.

The height to length ratio varies from small specimens to large ones, the smaller being relatively higher, so that specimens of approximately the same size must be compared. A few measurements will show this, and also the differences in form.

	Length in mm without incrustation	H/L ratio
Peru	-.... 80.0	23.1
Ecuador.	-..... 63.2	25.3
	29.2	27.4
	16.8	30.0
Costa Rica	-..... 81.5	25.7
	61.0	26.3
Lower California	--... 59.0	32.7
	29.3	34.8
	13.8	42.0
	62.5	30.0
	55.0	29.1
	49.0	30.6
	28.2	32.0

The type locality for both Lithophaga attenuata (Deshayes) and Lithodomus inca Orbigny is Peru and apparently they both belong to the slender form and are synonymous, especially as Orbigny (1846) gives no records of attenuata Deshayes. The H/L ratio for L. inca is given as 24 . The differences in form between the typical southern elongate specimens and the northern shorter ones are rather distinct; but without a larger amount of material it is not advisable to give the northern form a subspecific name.

The largest specimen, from Costa Rica, has a total length of 100 mm , or 81.5 without the incrustation.
Occurrence: Most of the collecting was done in shallow water, but several samples were collected in deeper water down to 45 fms . All samples are from within the known range of distribution.
Distribution: Miller's Landing, Baja California, to Chile (Hertlein and Strong).

Lithophaga (Labis) peruviana (Orbigny) 1846
Plate 10, fig. 58
Lithodomus peruvianus Orbigny, Voyage dans l'Amérique Méridionale, vol. 5, Mollusques, 1846, p. 651.
Holotype: ?

Type loc.: Callao, Peru.

Remarks: The description is very short but it agrees completely with a large species of Lithophaga with a median spinelike posterior projection of the incrustation, which in itself is not so heavy as that found in Lithophaga attenuata. The posterior retractor is dorsal to and separated from the posterior adductor.

Orbigny gives 71 mm as the total length, with an H / L ratio of 31 . Our specimens are distinctly lower, with a ratio of 23 or less. The largest specimen measures 71 mm without the projecting incrustation, which in these specimens shows a tendency to be different on each valve.
Occurrence: Orbigny says that this species is very common along the coasts of Peru, living in loose rock or in the bones of whales. The samples at hand were taken in depths ranging from 10 to 18 fms ; only one small specimen was obtained by shore collecting.
Distribution: Peru.

Subgenus LEIOSOLENUS Carpenter 1856

Leiosolenus Carpenter, Catalogue of the Reigen Collection of Mazatlan Mollusca, 1856, p. 130.
Type of subgenus: Leiosolenus spatiosus Carpenter 1856 (by monotypy). Remarks: The short diagnosis given by Carpenter contains only the supposition that the animal should have a long excurrent siphon, while the chambers have bilobed pipes. His new species, Leiosolenus spatiosus, was based on only one specimen, 1.5 inches long, and the short description gave as specific character the thin and equally diffused incrustation without projecting parts. On p. 550 in the Appendix, he reported another specimen, 2.3 inches long. L. spatiosus seems not to have been obtained later under that name.

Mörch (1861) referred Lithophagus rugiferus (Dunker) Reeve 1857, description published by Carpenter (1856), to the genus Leiosolenus on the basis of certain anatomical characters, especially the elongate siphons; and he also placed Lithophaga patagonica (Orbigny) 1846 in the same genus. This character seems, however, to be more or less common for all species of nearly all groups of Lithophaga. Lamy (1937) gives, as the character separating Leiosolenus from the other groups, the thin, more uniform incrustation without appendages projecting beyond the posterior margin; but in characterizing the various species referred to Leiosolenus, he mentions several with more or less projecting incrustation.

Species belonging to this group are found mainly in the Pacific. There seems to be reason to consider Lithophagus rugiferus Reeve 1857 and Lithophaga abbotti Lowe 1935 as synonyms of L. spatiosa Carpenter
1856. One species with typical incrustation seems to be new to science. Key to west American species:

Incrustation thin, tending to be arranged in transverse rows of pustules
spatiosa (Carpenter)
Incrustation loose, chalky, forming a divaricating pattern on the posterior part
hancocki n. sp.
Lithophaga (Leiosolenus) spatiosa (Carpenter) 1856
Plate 10, fig. 59
Leiosolenus spatiosus Carpenter, Catalogue of the Reigen Collection of Mazatlan Mollusca, 1856, pp. 130-131.
Syn.: ?Lithophagus rugiferus Carpenter 1856.
?Lithophaga abbotti Lowe 1935.
Holotype: British Museum
Type loc.: Mazatlán, Sinaloa, Mexico.
Remarks: The descriptions of this species and of the subgenus Leiosolenus are very short and based mainly on the chambers made by the boring bivalve. The main characters of the bivalve are the short, bent shell, with well rounded ends, barely angled dorsal margin, and slight excurvature in front. The incrustation is thin, equal over all the surface and tending to be arranged in transverse rows of pustules. It seems to be a large species, though the length of the type, which is supposed to be a young specimen, is only one and a half inches. As far as I can see, this species has not been recognized since it was described by Carpenter; but it is very possible that Lithophagus rugiferus Carpenter and Lithophaga abbotti Lowe should be referred to the same species.
L. spatiosa represents one of the largest species, with length up to 62.5 mm (abbotti Lowe). The incrustation is variable but usually some transverse rows of pustules can be observed on fresh specimens.
Occurrence: The records are from the shore down to 15 fms , boring in valves of Pinctada and Ostrea (rugiferus Carpenter).
Distribution: From Ecuador (rugiferus) to San Felipe, Gulf of California (abbotti).

Lithophaga (Leiosolenus) hancocki new species

 Plate 10, fig. 60Diagnosis: Shell elongate, cylindrical, rather inflated, two and a half to three times as long as the maximal height; umbones nearly terminal, anterior margin rounded, ventral margin nearly straight with a rounded posterior margin, dorsal margin with a more or less distinct median
angle. Periostracum light, yellowish-brown. The whole surface covered by a loose chalky incrustation; the triangle from the umbo to the posterior margin bounded by an indistinct ventral furrow and a very shallow dorsal depression, with an incrustation which forms a divaricating pattern and is more solid toward the posterior margin, where it generally projects slightly beyond the valve, with irregular granulated margins.

Anterior retractor relatively short, posterior retractor above the adductor, which is as far from the posterior margin as one and a half times its own length. Nymphae and resilial list narrow and weak. The maximal length is 38 mm .
Holotype: Allan Hancock Foundation. Measurements: length, 32 mm ; height, 10.8 mm ; diameter, 10 mm .
Type loc.: Isla Onslow, north of Isla Floreana (Charles Island), the Galapagos Islands (804-38).
Remarks: The loose, often rather thick, incrustation, especially on the anterodorsal part, and the divaricate pattern on the posterodorsal triangle, together with the lack of projecting parts of the incrustation, are characters which make the recognition of this species very easy. As far as can be seen, no other species of Lithophaga combining these characters has been described, though the new species seems to be very like a Japanese species reported as L. lima Lamy 1919, a Red Sea species.

It is a pleasure to dedicate this species to Captain Allan Hancock, whose interest in the exploration of the marine life in the eastern Pacific has made this rich collection possible.
Occurrence: Fifty two specimens out of a total of sixty nine were found in the crater on Isla Onslow, Galapagos Islands, apparently boring into loose coral (Pavona) in shallow water. One specimen was taken at a depth of 13 fms , on rocky bottom. Three typical specimens from Isla Taboguilla, Panama, from the Lowe collection, are preserved in the San Diego Museum (cat. no. 28374, C. A. Reed leg.).
Distribution: The Galapagos Islands; Panama.

LIST OF MATERIAL OF THE FAMILY MYTILIDAE PRESERVED IN THE ALLAN HANCOCK FOUNDATION COLLECTION

The list of stations under each species is arranged as correctly as possible from north to south, after the records at hand. Place names are given as listed in the Millionth Map of Hispanic America, American Geographical Society. Alternative names for stations occupied by the Velero III from 1931 to 1942 will be found in the Allan Hancock Pacific Expeditions, Volume 1, number 3. The numbers marked BS are mud sample stations taken separately, and alternative names for these will be found in the Allan Hancock Pacific Expeditions, volume 6. Other numbers represent stations at which collections were made by members of the Allan Hancock Foundation staff, or by others.

The stations lying within a line from Cabo San Lucas, Baja California and Cabo Corrientes, Jalisco, Mexico, are recorded as from the Gulf of California.

Dead specimens and loose valves are listed as valves.
Specimensone small
three valvesmany largefour
five
many
four
two
onesix
two
many
many
five and
juvenil
twotwotwo
three
Remarks

Loose rock, mud banks

Loose rocks, tide pools,
kelp holdfasts

Worm tubes from piles
and floats
Mud and sand flats
Loose rocks, sand, kelp
holdfasts, tide pools
Algae covered rocks on
mudflats
Clam beds
Depth
Intertidal
Intertidal
Intertidal
Intertidal

South shore, near
station
$120 \mathrm{fms}(1)$
Alaska
Station Location Alaska
Controlle $\begin{aligned} 29304 & \text { Alaska } \\ \text { Acc. } 1081 & \text { Controller Bay }\end{aligned}$
Oregon Oregon $1480-42$
Old railroad spur, pier and loose rocks on mud 1476-42 Old submerged jetty, Coos Bay Hallmark Dock, Charleston
Hallmark Dock, Charleston 1474-42 \quad N of bridge, east side, Charleston
$1464-42 \quad$ S side, Sunset Bay, Coos Co.California
Albion River estuary, Mendocino Co.
Horseshoe CovShirttail Gulch, Bodega Bay, Sonoma CNorth Jetty, Bodega Bay, Sonoma Co.North Jetty, Bodega Bay, Sonoma Co.
ن்Beach
nomaHead,Off Fort Ross, Sonoma Co.Bodega Lagoon, Sonoma Co.Mussel Pt 2 mi N of BodegaNorth Jetty, Bodega Bay, Sonoma CoCampbell's Cove Bodega Lagoon, Bodega Bay

$1669-49$
M $65-49$
$1815-49$
$1814-49$
$1802-49$
$1796-49$
$1794-49$
California
Specimens
eleven
many
one
four
two
four
ten
two valves
one
three
one
several
one
six valves
two valves
many

two
many
two valves
five
many
one
seven
one
one small
many small
one valve
one
one
two and two
valves
mal
ma

Depth	Remarks
Shore	Exposed rocky coast, sand Coarse to fine sand, rock
Bluff	
3-5 fms	Loose rocks Fine mud
	Sand fiats
	Pilings
	Scrapings from buoys and pilings
Rocky beach	
Intertidal	Harbor floats and piles
Shore	Sand, rocks, eel grass
Beach	
Shore	Coarse sand, eel grass
Site of old pier	Reefs at low tide
$14-16 \mathrm{fms}$	Kelp, gray sand
Intertidal	Reefs, caves

San Pedro

Off Fred Lewis' Landing, Newport Harbor Off Balboa Yacht Club Corona del Mar
Corona del Mar
$\begin{aligned} 2131-52 & \text { Newport Bay to Corona del Mar } \\ 1218-40 & \text { Laguna Beach } \\ \text { Acc. 176 } & \text { Catalina I. } \\ 1238-41 & \text { Off Wilson Cove, San Clemente I. } \\ 1506-46 & \text { La Jolla } \\ 1603-47 & \text { Reef S of Beach Club, La Jolla }\end{aligned}$

Mud	one small
Mussel bed, kelp, tide pools, loose rocks	seventeen
Loose rocks, mudflats	one
Mussel reefs, sandstone ledges, tide pools	three
Loose rocks, sand, kelp holdfasts, tide pools	nine
Rocks, kelp, tide pools	two
Loose rocks, tide pools, kelp	many
	three five
Rocky, with tide pools	one
Spray zone	two
Mussel beds	many
	two large, many small
Clam beds	one valve three
	two valves two
	one
	three
Rocks, sand	three, several small
Exposed rocky coast, sand	ten
Bluff	four small

3 fms
Rocky reef
Intertidal
Intertidal
Intertidal
Intertidal
Intertidal

Mouth of river
Wide, flat reef
Shore
1477-42

Oregon
 Oregon

1477-42	Agate Beach under Yaquina Head light
1480-42	Old railroad spur and pier, Yaquina Bay
$1466-42$	North side, Sunset Bay, Coos Co.
1464-42	South side, Sunset Bay, Coos Co.
1468-42	Middle Bay, Cape Arago State Park, Coos Co.
1492-42	South Bay, Cape Arago State Park, Coos Co.
nia	
EB 42	Albion Bay, Mendocino Co.
EB 41	Point Arena
EB 37	Salmon Pt., Mendocino Co.
EB 15	Salmon Pt., Mendocino Co.
EB 12	Salmon Pt., Mendocino Co.
1671-49	East Beach, 1 mi N of mouth of Russian
	River, Sonoma Co.
1627-48	Carmet, 1 mi N of Salmon Creek, Sonoma Co.
1677-49	Horseshoe Cove, 2 mi N of Bodega Head,
M97-49	Shenoma Co. Beach, N end, Bodega Bay, Sonoma Co.
M70-49	Bodega Lagoon, Sonoma Co.
1802-49	North Jetty, Bodega Bay, Sonoma Co.
1815-49	North Jetty, Bodega Bay, Sonoma Co.
Modega Bay beach, Sonoma Co.	
M71-49	South Jetty, Bodega Bay, Sonoma Co.
1653-48	Second Sled Road, Dillon Beach, Marin Co.
1607-48	Dillon Beach, Marin Co.
1608-48	Tomales Pt., Marin Co.

Specimens
one
many
one
one small
three
twelve
twelve
one
five
six
two valves
five
four
many
three
five
two
one
many
seven
one
six
many
one
two large,
many
four
three
one valve
mal
Remarks
Rocky coast, substratum of
coarse sand and rock
Coarse sand, granite
boulders
Shore collecting
Rocky reefs
Rocky reefs
Rocky reefs, tide pools
Cliffs, stacks, exposed reefs
Rock patches, sandy beach
Algae covered rocks,
underlaid with sand
Rocky
Rock
Protected
Low tide
Mud, sand, algae, kelp,
rocks
Low tide
Rocky shore
R
(

Station	Location
1628-48	Tomales Bluff, bay side, Marin Co.
1656-48	Tomales Pt., bay side, Marin Co.
	Tomales Bay Head
1604-47	Point Piños, Monterey Co. Pacific Grove
1579-47	0.5 mi W of Cayucos, San Luis Obispo Co.
1583-47	4.5 mi W of Cayucos, San Luis Obispo Co.
1581-47	Leffingwell Landing, near Cambria, San Luis Obispo Co.
1598-47	Piedras Blancas, San Luis Obispo Co.
1575-46	6.7 mi S of Surf (Pedernales Pt.), Santa Barbara Co.
1574-46	3 mi S of Seacliff, Ventura Co.
1315-41	Olive Mill Road, Montecito
	Point Mugu
1297-41	0.5 mi E of San Pedro Pt., Santa Cruz I.
883-38	Tyler Bight, San Miguel I.
1664-48	Willow Anchorage, Santa Cruz I.
1193-40	Willow Anchorage, S side, Santa Cruz I.
1199-40	E of Gull I., S of Santa Cruz I.
	Point Dume
	Topanga Canyon, Santa Monica
	Venice Biological Station
Acc. 186	Venice
1208-40	Playa del Rey
	Redondo Beach
1593-47	Hermosa Beach
	Hermosa Beach
	Palos Verdes
1573-46	Palos Verdes, near Bluff Cove
	Portuguese Bend

seven
岂 one six many
four valves many two va
号 one small one，five valves two one valve one
one
范
 one
 one small two three one six valves two small范
Mud，eel grass，sand
Sand，mud，Zostera
Rock，sand
Reefs at low tide
Mud
Protected rocky shore
Rocky headland
Fine sand
Reefs and caves
Rocky outcrops in lagoon
Rocky
Rocky reefs
Rocky reef
Rocky shore
Cobble reef
Rocky beach
Shore
West shore
Shore
Shore
Shore
Shore
Site of old pier
$25-29$ fms
Shore
Shore
4－9 fms
Intertidal
Shore
Rocky reef
Intertidal
Intertidal
Shore
Shore
Specimens
five
one small
two valves
many
many
two
two small
one valve
nineteen,
from 7.5
to 51 mm
one valve
two valves
several

Depth	Remarks
Shore	Rocky ledge, kelp
5 fms	Rock
Shore	Rock
Shore	Sand
Shore	Rock
Shore	Rock
$17-25 \mathrm{fms}$	
Shore	Rock
Shore, head of bay	Rock, sand
5-10 fms	Hard sand, shell
Shore, rocky headland	Granite rock, heavy surf, tide pools, mussels abundant, T $24.9^{\circ} \mathrm{C}$.
Shore	Rock with Ectocarpus, T $25^{\circ} \mathrm{C}$.
25 fms	Coarse sand

ジ
purs

Rocky and underlaid. Heavy covered sand Low tide
Mud
Rocky headland
Kelp from shore rocks
Rock

Aulacomya ater (Molina)
364-35 Off Isla de San Lorenzo, near Callao

388-35 Off Middle island, Islas de Chincha

> Hormomya granulata (Hanley) Peru 376-35 $\begin{gathered}\text { E of Isla de las Viejas, Bahía de la } \\ \text { Independencia }\end{gathered}$
825-38 Bahía de San Juan $\begin{aligned} 1189-40 & \text { Santa Cruz Island } \\ \text { Acc. } 696 & \text { Santa Cruz Island }\end{aligned}$

Portuguese Ben
Point Fermin
$\begin{array}{ll}\text { 1218-40 } & \text { Laguna Beach, site of old pier } \\ \text { 1130-40 } & \text { Off Abalone Pt., Laguna Beach }\end{array}$ Acc. 495 Isthmus Cove, Catalina I. 1367-41 White Cove, Catalina I. 1221-40 Avalon, Catalina I.
Specimens
several
five
several
fourteen
one
three
three
one
one
many
one

many
two
one, small
one
one
one valve
one
five
two
one valve
one
many
one
five
many
many
four
men
Remarks

Rocky headland
Flat cobblestone reef
Rock, eel grass, turnable
\quad boulders
Rocky beach
Rock, shingle
Rock, reef, tide pools
Rock
Rocky ledge, kelp

Rocky reef
Rock
Sand
Shingle
Shingle
Rocky beach
Rocks, pools
Reefs, rocks
Rock, tide pools
Granite reef
Rock
Low tide
Reef

Roon
Rock
Rol

California, Pacific coast South island, Islas Coronados
Punta Santa Rosalía
Punta Rosarita on Bahía Rosar

Station

Isla de Cedros

Barra Navidad, Jalisco
Rocas de San Lorenzo, Acapulco
Acapulco, end of seaward peninsula, opp
I. Roqueta

I. Roqueta

260－34 El Bufadero，Bahía Tangola Tangola
island in bay
Shore on rocky
headland
Shore of small
island at entrance
Shore
Shore
$30-50 \mathrm{fms}$
North shore
$8-10 \mathrm{fms}$ eleven
one
two
華显邑 离
苞
$\stackrel{\circ}{\circ}$
two
©
five
many

one small
three valves O ○ 莡 号 Heavily surf－beaten granite rock，tide pools Rock
Rock
Rock
 Rock
Rock
Rock
Rocks，pools Rocks，sand，kelp
Algae covered rocks
overlaid with sand
Shore on small
island in bay
Shore on rocky

headland \quad| Shore of small |
| :--- |
| island at entrance |
| Shore |
| Shore |
| $30-50 \mathrm{fms}$ |

30－50 fms
Shore
Shore
Shore
Protected reefs
Rocky reef
Sandy beach Intertidal
※

260－34	El Bufadero，Bahía Tangola Tangola
Dawson 94	Salina Cruz，Oaxaca
Costa Rica	
$466-35$	Puerto Parker，opp．Punta Abajo
$256-34$	S of Punta Mala
Panama	
$866-38$ Islas Secas BS 332 Off North Island，Bahía Honda	

Galapagos Islands Cartago，Isla Isabela（Albemarle I．）
800－38 Bahía de Cartago，Isla Isabela（Albemarle I．） 56－33 Bahía Flamingo，off Punta Cormorant，Isla
Floreana（Charles I．）

$$
\begin{aligned}
\text { 211-34 } & \begin{array}{l}
\text { Isla La Plata } \\
\text { La Libertad }
\end{array} \\
\text { 16-33 } & \text { Bahía de Sant }
\end{aligned}
$$

Septifer bifurcatus（Conrad）

1576－47 0.5 mi N of Cayucos，San Luis Obispo Co．
Ecuador
16－33 Bahía de Santa Elena，S of La Libertad
$\begin{array}{cc}1579-47 & 0.5 \mathrm{mi} \text { W of Cayucos，San Luis Obispo Co．} \\ 1599-47 & \begin{array}{c}\text { Breaker Point，near Piedras Blancas，} \\ \text { San Luis Obispo Co．}\end{array} \\ \text { 1585－47 } & \begin{array}{c}\text { Wood Mar，} 5 \text { mi E of Gaviota Beach，} \\ \text { Santa Barbara Co．}\end{array} \\ \text { 1448－42 } & \text { Pt．Arguello，U．S．C．G．Life Boat Station }\end{array}$ $\begin{array}{cc}\text { 1599－47 } & \begin{array}{c}\text { Breaker Point，near Piedras Blancas，} \\ \text { San Luis Obispo Co．}\end{array} \\ \text { 1585－47 } & \begin{array}{c}\text { Wood Mar，} 5 \text { mi E of Gaviota Beach，} \\ \text { Santa Barbara Co．}\end{array} \\ 1448-42 & \text { Pt．Arguello，U．S．C．G．Life Boat Station }\end{array}$

1448－42
Pt．Arguello，U．S．C．G．Life Boat Station
outside breakwater
$1315-41$ $\begin{aligned} & \text { Olive Mill Road，Montecito }\end{aligned}$ $\begin{array}{cc}\text { 1599－47 } & \begin{array}{c}\text { Breaker Point，near Piedras Blancas，} \\ \text { San Luis Obispo Co．}\end{array} \\ \text { 1585－47 } & \begin{array}{c}\text { Wood Mar，} 5 \text { mi E of Gaviota Beach，} \\ \text { Santa Barbara Co．}\end{array} \\ 1448-42 & \text { Pt．Arguello，U．S．C．G．Life Boat Station }\end{array}$ $\begin{array}{cc}\text { 1599－47 } & \begin{array}{c}\text { Breaker Point，near Piedras Blancas，} \\ \text { San Luis Obispo Co．}\end{array} \\ \text { 1585－47 } & \begin{array}{c}\text { Wood Mar，} 5 \text { mi E of Gaviota Beach，} \\ \text { Santa Barbara Co．}\end{array} \\ 1448-42 & \text { Pt．Arguello，U．S．C．G．Life Boat Station }\end{array}$

－

Remarks	Specimens
Rocky reef, loose rock, gravel	four
Low tide	one small
	one
	two valves
	five valves
Rocks, reefs	two valves
	two
	one
	three valves
	one
	three
Low tide	one
	three
Mud	eleven valves
	one
	one small piece
	one
	two valves
Green sand	one valve
	two valves
Rock, tide pools	many
Reefs and caves	one
	four
Rocky	four
Rocky reef	four
Rocky reef	one
Rocky reef	one
Rock, tide pools, surf grass	six
Rock, eel grass, turnable	three
boulders	

Station	Location	Depth
1660-48	SW shore of Smugglers Cove, Santa Cruz I.	Shore
1193-40	Willow Anchorage, S side, Santa Cruz I. Venice Biological Station	Beach
Acc. 189	Venice	
Acc. 186	Venice	
1013-39	Portuguese Bend	Shore
	Portuguese Bend	
Acc. 587	Pt. Vicente, near Rocky Pt.	12 fms
Acc. 575	Pt. Vicente	
Acc. 573	Pt. Vicente	
Acc. 574	Pt. Fermin	
1222-41	Newport and Balboa Channel	Shore
	Corona del Mar	Beach
1130-40	Off Abalone Pt., Laguna Beach	25-29 fms
Acc. 1172	Laguna Beach	
BS 1248	8.5 mi E of Long Pt., Catalina I. Abalone Cove, Catalina I.	228 fms
Acc. 335	Catalina I.	
1205-40	S side of San Nicolas I.	20-34 fms
BS 1002	Northwest Anchorage, San Clemente I.	20 fms
1025-39	Horse Cove, near Pyramid Cove, San Clemente I.	Shore
1506-46	La Jolla	Intertidal
1603-47	Reef S of Beach Club, La Jolla	
Mexico: Baja California, Pacific coast		
1594-47	Punta Descanso	
1505-46	Near Punta Descanso	Intertidal
1596-47	Mouth of Rio de Santo Tomás, between Punta Santo Tomás and Punta San José	
1595-47	Mouth of Rio de Santo Tomás	
1976-50	W side of middle island, Islas San Benito	Shore
1946-50	East island, Islas San Benito	Shore

范 을을․․․․

 one valve
one valve
one valve
many valves
one valve
three valves
one valve
three valves
five valves
one valve
three, two v four valves one one valve
one valve three valves

Rock, kelp, tide pools Mud, with 3" layer of shell
Rock ت
 Granite reef, pools, surf rocks
Sand, shell, algae
Shore
Shore

Shore

42 fms
$17-18 \mathrm{fms}$
18 fms

$62-85 \mathrm{fms}$
14 fms
1 fm
8 fms
95 fms
19 fms
47 fms
$3-5 \mathrm{fms}$
10 fms
50 fms
Shore

シ̊
SOA［EA OMI

$$
\begin{aligned}
& \text { one valve } \\
& \text { one }
\end{aligned}
$$

three valves many valves
five valves
two valves n
0
0
0
0
five
many
several
many
many
many
five
sever
four
four
two
one
nine
thirteen

Coral
Rocky headland
Cobblestone reef
気㤩
Reef，pools

Rock，sand
Granite outcrops
Abundant mussels，
tide pools
Granitic rock
Rock Abundant mussels，rocks， tide pools ．
Rock
Rock，sand
－
Shallow water
$12-15 \mathrm{fms}$
10 fm
Shore
Shore
3 fms
2.5 fms
$10-20 \mathrm{fm}$
8 fms
0
©
あ
Shore
Shore
Shore
Rocky shore
$0-2 \mathrm{fms}$
Rocky headland Headland
12 fms
357－35 Bahía de Gardner，Isla Española（Hood I．）
356－35 Bahía de Gardner，Isla Española（Hood I．）
Brachidontes multiformis（Carpenter）
Mexico：Baja California，Pacific coast
$\begin{aligned} \text { Dawson } 9 & \text { Punta Rosarita，Bahía Rosarita } \\ \text { Dawson } 14 & \text { Miller＇s Landing，S of Punta Rosarita }\end{aligned}$
Mexico：Gulf of California
1070－40 Bahía de San Felipe
107140 Off Punta Willard，Bahía de San Luis Gonzaga
BS 2060 Punta Piaxtla，Sinaloa
Dawson 57 Off Punta San Francisquito，near Guaymas，
Sonora
$\begin{array}{ll}\text { Dawson } 49 & \text { Punta Palmilla，near San José del Cabo } \\ \text { Dawson 71 } & \text { Reef 2 mi N of Mazatlán，Sinaloa } \\ \text { Dawson } 70 & \text { Mazatlán，Sinaloa } \\ \text { Dawson } 68 & \text { N of Olas Altas light，Mazatlán，Sinaloa } \\ \text { Dawson } 69 & \text { S side of Olas Altas light，Mazatlán，Sinaloa } \\ \text { Dawson } 67 & \mathrm{~N} \text { and S side of Playa de las Olas，}\end{array}$
Mazatlán，Sinaloa
Barra Navidad，Jalisco
$\begin{aligned} & \text { Dawson 85 } \text { Barra Navidad，Jalisco } \\ & 2591-54 \text { Rocas de San Lorenzo，Acapulco，Guerrero } \\ & 1552-46 \text { Rocas de San Lorenzo，Hornos，} \\ & 2596-54 \text { Acapulco，Guerrero } \\ & \text { Bahía de Santa Lucía，Acapulco，Guerrero } \\ & \text { awson 123 } \text { SE side of bay，Acapulco } \\ & \text { Dawson 94 } \text { NW of Salina Cruz，Oaxaca } \\ & \text { Dawson 95 } \text { S of Salina Cruz，Oaxaca }\end{aligned}$
Mexico
Isla Salango
Ecuador
Specimens
two small
three valves
two valves
three
many
many
two
one right valve,
8 mm
two
one valve
many
one
many
two valves
many dark colored
many small green
colored
Remarks
Rock
Rock
Sand
Rock
Rock
Rock
Sand, shell
Rock
Rock
Lava rock, tide pools,
mangroves
Rock, sand
Rock

Station Location
Depth
5 fms
5 fms
Shore
Shore
Shore
Shore
$8-12 \mathrm{fms}$
Depth
\quad at entrance
Small island
Shore
Shore
West shore
North shore

Shore
Lagoon
Shore

אuew

two，one 11.4 cm ．
one
one valve
one
one
one large valve
one
two
one
four and two valves
two
two
范关曾 范 范
one $\stackrel{0}{\pi}$
$\stackrel{3}{5}$
0
0 seven

Specimens
one
one valve
one valve
two
six
one
one and two valves
one
one
one
two valves
two, length 155 mm
three
three
two
one
one
two
one
one, length 14 mm
one

Depth
Shore
Shore
24 fms
$1-2 \mathrm{fms}$
Shore
Shore
22 fms
Shore
Shore
13 fms
24 fms
Shore
Shore of small
island at entrance
14 fms
Shore
North shore
$8-10$ fms
Shore

$\begin{aligned} \text { 1738-49 } & \text { Canal de San Lorenzo, Isla Espíritu Santo } \\ \text { 607-36 } & \text { Canal de San Lorenzo }\end{aligned}$
Panama
800-38 Bahía de Cartago, Isla Isabela (Albemarle I.)
Costa Rica
466-35 Puerto Parker, opposite Punta Abajo

> 450-35 Islas Secas 861

800-38 Bahía de Cartago, Isla Isabela (Albemarle I.)

Ecuador
 209-34 Off La Puntilla, Bahía de Santa Elena

Peru

380-35 Bahía de la Independencia

Modiolus fornicatus (Carpenter)
California
1669-49 Horseshoe Cove, 2 mi N of Bodega Head,
Sonoma Co.
Ives

Low tide, heavy shingle

$\stackrel{3}{3}$

므르․ .

1817-49 South Jetty, Bodega Bay, Sonoma Co. 1189-40 Santa Cruz I. Portuguese Bend

Modiolus rectus (Conrad)

Alamitos Bay, Long Beach
San Diego
Modiolus eiseni Strong and Hertlein Mexico
BS 217 Bahía Tenacatita
Costa Rica
116-33 Bahía Cocos, S of Boca de Culebra

Panama
 863-38 Off Isla Medidor, Bahía Honda

Modiolus neglectus n. sp.

Remarks	Specimens one many small two four two
Mud，sand	one
Sand	one
Green sand，mud	one valve
Mud	one and three valves
Mud	two
	two one
Sand and mud	one
Sand	one
Coralline，sand	one
Coarse gravel	one
Mud，sand，dead shells	two valves
Low tide，heavy shingle	one
Fine sand，nullipores	one valve
	one valve
Soft sand	one small
Shale，gray sand，mud	one
Sand，shell	one
Shell，red algae	subfossil

Depth
$10-13 \mathrm{fms}$

$17-18 \mathrm{fms}$
19 fms
$26-27 \mathrm{fms}$
$25-29 \mathrm{fms}$
$54-57 \mathrm{fms}$

$24-25 \mathrm{fms}$

18 fms
13 fms

$59-64 \mathrm{fms}$

16 fms
$54-56 \mathrm{fms}$
$B e a c h$
$15-19 \mathrm{fms}$
14 fms
$45-46 \mathrm{fms}$
$37-39 \mathrm{fms}$
$34-41 \mathrm{fms}$
$15-21 \mathrm{fms}$

Station Location Loca Beach Long Beach Long Beach Long Beach Long Beach light
Seal Beach

Nonかの○ーー Station
Acc． 54 Acc． 56
Acc． 5
Acc． 5
Acc． 5
Acc． 57
Acc．
$1169-4$
2041－5
$1236-41$
$1130-40$ 1130－40 1131－40 Hubbs 45－188 Off Coronado Strand Mexico：Baja California，Pacific coast $\begin{array}{cc}\text { 1716－49 } & 4.75 \mathrm{mi} \text { N of Punta Entrada，Bahía de la } \\ \text { Magdalena } \\ \text { 1715－49 } & 5 \mathrm{mi} \mathrm{NE} \text { of Punta Entrada，Bahía de la } \\ \text { Magdalena }\end{array}$ Mexico：Gulf of California
$1034-40$ Outer Gorda Bank

Modiolus sacculifer（Berry） California
886－38 S of Pillar Pt．，Halfmoon Bay Cruz I． 1189－40 Santa Cruz I．
mi SW of Fraser Pt．，Santa Cruz I．
BS 1074 Bechers Bay，N of Santa Rosa I
1411－41 1.5 mi SW of Judith Rock，San Miguel I．
1294110.5 Mi Suef Passage

1280－41 2.5 mi E of South Point，Santa Rosa I．
three valves,
subfossil
three valves
one
one
one valve
one
two valves
nine valves
four
seven
two valves
two valves
four
one
seven
one small
two small
many small
one
two valves
seven small
two
one

Gravel, sand
Sand, mud, kelp, red algae
Mud, sand, dead shells
Mud
Coarse black mud, sand
Sand, mud, algae
Sandy mud, worm tubes,
dead shell
Worm tubes, kelp
Kelp, worm tubes
Kelp
Kelp, gray sand
Gray-green sand
Shell, mud
Rock
$23-28 \mathrm{fms}$
 30 fms
14 fms
$15-16 \mathrm{fms}$
$14-16 \mathrm{fms}$ $24-25 \mathrm{fms}$
$5-18 \mathrm{fms}$ Shore
29-30 fms

Modiolus americanus (Leach) $\begin{array}{ll}1261-41 & 4 \mathrm{mi} \text { N of Canal de Dewey } \\ 1787-49 & 0.5 \mathrm{mi} \text { SE of Punta Hughes, Bahía de } \\ & \text { Santa María }\end{array}$
Ecuador
Amygdalum pallidulum (Dall)
California
1274-41 3.5 mi S of Hueneme
Specimens
five
one
eight
one large
many
many
seven
nine
many large
twelve
two
many
one
one
six
four
two and one
two and two
one and two
many
良

Remarks
lud, sand, dead shell
Dead shells
Gray-green sand
Shale, gray sand, mud
Crinoids
Green mud
Sand, shell
Gray sand, mud
Sand, shell
Green mud
Sand, broken shells
Mud, sponge
Green mud, crinoids
Green, sandy mud
Green mud
Low tide
Mud
Gray sand, sponges
Mud
Gray sand
Mud
Gray sand
Green sand, broken shell
Broken shells, brachiopods
Gand

BS 12200.75 mi E of Empire Landing, Catalina I.
1000-39 Off Long Pt., Catalina I. 1384-41 0.5 mi NE of Long Pt., Catalina I. 1002-39 Off Long Pt., Catalina I. 1 mi S of Ben Weston Pt, Catalina mi E of Church Rock, Catalina I.
of SE end of Catalina I.
Off San Nicolas I.
2 mi W of Church Rock,
2 mi W of Church Rock, Catalina I.
1.5 mi off Dutch Harbor, San Nicolas
NW of San Clemente I.
Off Pyramid Cove, San Clemente I.
S of Pyramid Cove, San Clemente I. 9.5 mi NNW of buoy, Cortes Bank
: Baja California, Pacific coast
4 mi N of Islas de Todos Santos
2 mi SE of Isla de Cedros light
Off Islas San Benito
5.5 mi S of Islas San Benito
8.5 mi S of Isla de Cedros
8.5 mi S Canal de Dewey
BS 509 Off coast of Colombia, SW of Isla Gorgona
$\left(1^{\circ} 02^{\prime} 30^{\prime \prime} \mathrm{N}, 81^{\circ} 12^{\prime} \mathrm{W}\right)$
Amygdalum americanum n. sp.

$\begin{aligned} \text { Costa Rica } & \\ 461-35 & \text { Bahía Playa Blanca } \\ 253-34 & \text { Boca de Culebra } \\ 257-34 & \text { Bahía Cocos, off Boca }\end{aligned}$
257-34 Bahía Cocos, off Boca de Culebra
Specimens
one
one small
one
five
one
one
one
one valve
one valve
two valves
three valves
three valves
one valve
two valves
five
one and two
one valve
ten valves
one valve
two
Remarks
Nullipores
Mud, shell
Sand, shell
From a water-logged maple
stump full of holes
Shell
Coral
Mud, sand, dead shell
Coralline sand, pebbles
Sand, gravel
Sand, shell
Gray sand, sea weed
Rock, coarse shell, kelp
Sand, mud, algae
Depth
20 fms

10 fms
2 fms

$60-74 \mathrm{fms}$

$5-9 \mathrm{fms}$
Shallow water

$2-5 \mathrm{fms}$

$54-56 \mathrm{fms}$
34 fms
$15-21 \mathrm{fms}$
$15-50 \mathrm{fms}$
$37-39 \mathrm{fms}$
$16-20 \mathrm{fms}$
30 fms
$31-40 \mathrm{fms}$
$7-16 \mathrm{fms}$
17 fms
27 fms
30 fms
45 fms

Location

Lioberus salvadoricus (Hertlein and Strong)
Costa Rica
$\begin{aligned} 253-34 & \text { Boca de Culebra } \\ 116-33 & \text { Bahía Cocos, S of Boca de Culebra }\end{aligned}$

Musculus olivaceus Dall

1498-42 35 mi W of Depoe Bay

Gregariella coarctata (Carpenter) Mexico: Baja California, Pacific coast KG 5 Laguna de Scammon
Mexico: Gulf of California
638-37 Bahía San Gabriél, Isla Espíritu Santo
Panama
Acc. 1097 Isla Taboga
Gregariella chenui (Recluz)
Gregariella chenui (Recluz)
California
1.5 mi NW of Cavern Pt., Santa Cruz I.
Off Pt. Bennett, San Miguel I.
1 mi SE of Smugglers Cove, Santa Cruz I. Anacapa Passage
S side of Santa Cruz I.
Off Portuguese Pt.
1.5 mi off White Pt.
Off Bird Rock, Catalina I.
Off Ship Rock, Catalina I.
Anchorage, White Cove, Catalina I.
0.5 mi off Empire Landing, Catalina I.
Off Goat Harbor, Catalina I.
Long Pt. to Willow Cove, Catalina I.
1143-40 $\begin{aligned} & 1.5 \mathrm{mi} \text { off White Pt. } \\ & \text { BS } 1255 \\ & \text { Off Bir Rock, Catalina }\end{aligned}$ Anacapa Passage
S side of Santa Cruz I.
Off Portuguese Pt.
1.5 mi off White Pt.
Off Bird Rock, Catalina I.
Off Ship Rock, Catalina I.
Anchorage, White Cove, Catalina I.
0.5 mi off Empire Landing, Catalina I.
Off Goat Harbor, Catalina I.
Long Pt. to Willow Cove, Catalina I. Anacapa Passage
S side of Santa Cruz I.
Off Portuguese Pt.
1.5 mi off White Pt.
Off Bird Rock, Catalina I.
Off Ship Rock, Catalina I.
Anchorage, White Cove, Catalina I.
0.5 mi off Empire Landing, Catalina I.
Off Goat Harbor, Catalina I.
Long Pt. to Willow Cove, Catalina I. Anacapa Passage
S side of Santa Cruz I.
Off Portuguese Pt.
1.5 mi off White Pt.
Off Bird Rock, Catalina I.
Off Ship Rock, Catalina I.
Anchorage, White Cove, Catalina I.
0.5 mi off Empire Landing, Catalina I.
Off Goat Harbor, Catalina I.
Long Pt. to Willow Cove, Catalina I.
Y은앙́N어NNNNN

two valves
one small
one valve
one
two valves
one valve
one valve
seven valves
three valves
many valves
one valve
two valves
four valves
four valves
many valves
four valves
four valves
many valves
four valves
one valve
nine valves
one valve
one valve
one valve
two valves
two valves
one valve
two valves
two valves
three valves

On rocks near dock; kelp

Shore
Shore
47 fms
$120-137 \mathrm{fms}$
 $26-31 \mathrm{fms}$
$17-18 \mathrm{fms}$

fms
\qquad
Specimens
one valve
six valves
one valve
one valve
one valve
one valve
two valves
six valves
two valves
two valves
two valves
four valves
one valve
one valve
one valve
many valves
one valve
one
one valve
one valve
one valve
four valves
three valves
Remarks
Mud, shell
Sand, with rock patches
Rock
Depth
12 fms
$30-50 \mathrm{fms}$
45 fms

17 fms
55 fms
$8-10 \mathrm{fms}$
65 fms
9 fms
15 fms
30 fms
Shore

35 fms
31 fms
41 fms
45 fms
109 fms
50 fms
118 fms
52 fms
37 fms
$78-110 \mathrm{fms}$
17 fms

Location
 $\begin{aligned} \text { Panama } & \\ \text { BS } 333 & \text { Islas Secas } \\ \text { BS } 332 & \text { Bahía Hond }\end{aligned}$

BS 332 Bahía Honda, off North I.

Colombia
BS 554 Bahía Octavia
Galapagos Islands
$\begin{array}{cl}\text { BS 418 } & \text { Bahía de Darwin, Isla Genovesa (Tower I.) } \\ 346-35 & \text { Between Isla Baltra (S. Seymour I.) and } \\ \text { Islas Daphne } \\ 187-34 & \text { Bahía de Cartago, Isla Isabela } \\ \text { (Albemarle I.) } \\ \text { BS 452 } & \text { Bahía del Correa, Isla Floreana (Charles I.) } \\ \text { BS 410 } & \text { Ensenada Tagus, Isla Isabela (Albemarle I.) } \\ \text { BS 465 } & \text { Black Beach, Isla Floreana (Charles I.) } \\ \text { BS 454 } & \text { Isla Española (Hood I.) }\end{array}$
Peru
Crenella divaricata (Orbigny)
.
$\oplus \infty$
BS $1239 \quad 1.5 \mathrm{mi} \mathrm{S}$ of Crook Pt., San Miguel I. Santa Rosa

El Segundo
1.3 mi NNE of Long Pt., Catalina I .

Off Catalina I.
5 mi SE of Church Rock, Catalina I.
Off Wilson Cove, San Clemente I. ente I.

Burch 4135
Mexico: Baja California, Pacific coast
BS 228 Ensenada Melpomene, Isla de Guadelupe
one valve
two valves
four valves
fifty－two valves twenty valves many valves forty－two valves four valves
two valves
two valves 5 four valves nineteen valves
thirteen valves
one valve
seven valves
eighteen valy
twenty－nine valves
five valves twenty－three one valve one valve
 one valve
thirty valves苞

 18 fms

Isla de Guadelupe
Isla de Guadelupe
7.25 mi S of Cabo Colnett
.25 mi S of Cabo Colnett
6.75 mi NW of Isla San Martín Isla de Cedros
Isla de Cedros，south bay of Canal de Dewey
NNW of Punta Eug 3.75 mi NNW of Punta Eugenia
Bahía del Tortuga Bahía de
Bahía del Tortuga
5 mi NE of Punta

1 mi N of Punta Redonodo light
Bahía de San Felipe
Bahía de San Felipe
Isla San Jorge
Off Punta Willard，Bahía de San Luis
Gonzaga
Off Punta Willard，Bahía de San Luis Gonzaga

[^1] かぁ心n

BS 2184

Specimens
many valves
fourteen valves
seven valves
one valve
eight valves
six valves
six valves
one valve
eight valves
ten valves
two pieces
one valve
three valves
one large valve
seven valves
several valves
five valves
several valves
three valves
eight valves
several valves
one valve
many
several valves
one valve
several valves
sen valves
several valves
five valves

Station	Location
593-36	Puerto Escondido, S of Loreto
BS 2017	Puerto Escondido, S of Loreto
BS 2018	Off Puerto Escondido
13S 2196	Bahía San Gabriél, Isla Espíritu Santo
BS 2012	Bahía San Gabriél, Isla Espíritu Santo
BS 2067	IBahía de Los F'railes
BS 2062	Isla Isabel
Mexico	
BS 2073	Off Black Rocks, near Cabo Corrientes, Jalisco
BS 2086	Bahía Tenacatita
13S 217	Bahía Tenacatita
BS 214	Near Los Frailes Blancos
BS 2075	Laguna de Chacahua, Oaxaca
BS 2076	Laguna de Chacahua, Oaxaca
Guatemala	
930-39	Off San José light
BS 325	Off San José
Costa Rica	
BS 324	Bahía de Salinas
13S 323	Bahía de Salinas
BS 320	Puerto Parker, off Punta Abajo
BS 336	Puerto Parker, off Punta Abajo
BS 319	Puerto Parker, off Punta Abajo
BS 309	Boca de Culebra
253-34	Boca de Culebra
116-33	Bahía Cocos, S of Boca de Culebra
BS 339	Golfo Dulce
BS 328	Bahía de Chatham, Isla del Coco
Panama	
BS 342	Islas Secas
BS 307	Islas Secas
BS 312	Islas Secas
BS 340	Off Islas Ladrones

2
many small valves many small
three valves
one valve one valve one valve nine valves
two valves one small valve five valves

วajea วuo

 five valves one valve valves two valvesmany valves

one valve

one valve
two and nine valves
one valve
five valves one valve alve
alves two valves む
$30-50 \mathrm{fms}$
12 fms
29 fms
24 fms

75 fms
35 fms
16 fms
32 fms
35 fms

$25-30 \mathrm{fms}$
$10-20 \mathrm{fms}$

$45-55 \mathrm{fms}$
12 fms
$8-12 \mathrm{fms}$
25 fms
15 fms
4 fms

10 fms
25 fms
48 fms
$34-35 \mathrm{fms}$
55 fms
$45-46 \mathrm{fms}$
17 fms
14 fms

BS 332	Bahía Honda, off North I.
BS 556	Puerto Piñas
BS 557	Puerto Piñas
BS 310	Off Isla Jicarita
Colombia	
BS 555	Bahía Octavia
BS 546b	W side of Puerto Utría
BS 514	Bahía Cabita, Cabo Corrientes
BS 584	N of Isla Gorgona
BS 541	Isla Gorgona
Galapagos Islands	
317-35	Off Rocas Gordon, Isla Santa Cruz (Indefatigable I.)
BS 483	Bahía de Academy, Isla Santa Cruz (Indefatigable I.)
Ecuador	
BS 518	Isla La Plata
BS 539	Isla Salango
BS 507	Bahia de Santa Elena, off Salinas
BS 504	Bahía de Santa Elena, off Salinas
BS 502	Bahia de Santa Elena, off Salinas
BS 501	Bahía de Santa Elena, off beach
Peru	
BS 578	Bahia de Sechura
BS 522	Near Rocas de San Lorenzo, Callao
Crenella decussata (Montagu)	
California	
BS 1240	2 mi SW of Cardwell Pt., San Miguel I.
1413-41	2 mi SW of Cardwell Pt., San Miguel I.
1436-41	2.75 mi N of West Pt., Santa Cruz I.
1298-41	1 mi N of San Pedro Pt., Santa Cruz I.
BS 1250	$3 \mathrm{mi} \mathrm{E} \mathrm{of} \mathrm{South} \mathrm{Point} ,\mathrm{Santa} \mathrm{Rosa} \mathrm{I}$.
BS 1012	Torney's Cove, Santa Cruz I.
BS 1074	Bechers Bay, N of Santa Rosa I.

Remarks
Sand, coralline
Sand, shell
Green, sandy mud
Gray sand, sea weed
Red sand, shell

one valve five valves
eight
four and nine valves one valve

 seven valves

Specimens
four and many
valves
four and four
valves
four
one valve
one valve
three valves
one
one
two valves
one
one and one valve
four
five
one and one valve
three valves
one
one large living but
broken, length at
least 22 mm
three valves
one valve
one valve
one valve
eleven valves
two valves
two valves
one valve
Remarks
Green sand, mud
Mud
Green mud
Mud
Green, sandy mud
Mud
Gray-green sand
Gray sand, mud, dead
shells
Mud
Green mud
Green sand, pebbles
Gravel, loose rock
Mud, fine sand
${ }^{3}$

six valvesone valveone valve ten valvesone valve总
one living
thirty－one valves
eight valves
two valves
five valves
twenty valves
one valve
one small living N five valves
읍등 one large broken， one smallOn wide，flat reef\＃̈
范
37 fms
$78-110 \mathrm{fm}$ 44 fms
75 fms

50 fms
95 fms
56 fms
50 fms
82 fms 30 fms
80 fms
32 fms
52 fms
65 fms
70 fms
160 fms
$25-35 \mathrm{fms}$ 35 fms
75 fms

む

$\begin{array}{ll}\text { BS } 1185 & 0.5 \mathrm{mi} \text { W of Castle Rock，San Clemente I．} \\ \text { BS } 1054 & \text { San Clemente I．，Pyramid Cove }\end{array}$

 Mexico：Baja California，Pacific coast
BS 2005 San Jaime Bank，off Cabo San Lucas

Mexico：Gulf of California

$\begin{array}{ll}\text { Galapagos Islands } \\ \text { 182－34 } & \text { Off Bahía de James，Isla Santiago（James I．）} \\ \text { BS 461 } & \text { Ensenada Tagus，Isla Isabela（Albemarle I．）} \\ \text { BS 447 } & \text { Bahía de Cartago，Isla Isabela（Albemarle I．）} \\ \text { BS } 484 & \text { Isla Santa Fé（Barrington I．）} \\ \text { BS 455 } & \text { Bahía de Cartago，Isla Isabela（Albemarle I．）} \\ \text { BS 452 } & \text { Bahía del Correa，Isla Floreana（Charles I．）} \\ \text { BS 488 } & \text { Off Isla Española（Hood I．）} \\ \text { 201－34 } & \text { Off Bahía de Gardner，Isla Española } \\ \text {（Hood I．）} \\ \text { BS 453 } & \text { Bahía de Gardner，Isla Española（Hood I．）} \\ \text { BS } 473 & \text { Off Isla Española（Hood I．）}\end{array}$
Adula falcata（Gould）
California
Point Arena
380－35 Bahía de la Independencia（Label wrong？）
Peru

Remarks	Specimens
Flat rocks, large boulders, much algae	six
Loose rock covered with dark brown kelp	one
Loose rocks, tide pools, kelp holdfasts	eight
Loose rocks, shale, algae beds	twenty-one
Mussel reefs, sandstone ledges, tide pools	three
Loose rocks, sand, kelp holdfasts, tide pools	two
Loose rock, shale ledges, heavy kelp	nine
Reefs, tide pools, loose rocks	nine
Shore, loose rocks, tide pools, kelp	eight
Rocks, kelp, tide pools	twenty-two
	four one
Exposed rocky coast, sand	one
Fine sand	two
Mud and sand flats	one
Clam beds	many one
	one, length 22 mm one one
Exposed rocky coast, sand	three small

Station	Location	Depth
Adula californiensis (Philippi)		
Oregon		
1479-42	Boiler Bay, N of Depoe Bay	Intertidal
1463-42	Old submerged jetty, Fossil Pt., Coos Bay	Intertidal
1476-42	Old submerged jetty, Coos Bay	Intertidal
1501-42	Old breakwater jetty, Fossil Pt., Coos Bay	Intertidal
1466-42	N side, Sunset Bay, Coos Co.	Intertidal
1464-42	S side, Sunset Bay, Coos Co.	Intertidal
1490-42	Cape Arago light, reef and bight, Coos Co.	Intertidal
1493-42	North Beach, Cape Arago State Park, Coos Co.	Intertidal
1487-42	Middle Bay, Cape Arago State Park, Coos Co.	Intertidal
1468-42	Middle Bay, Cape Arago State Park, Coos Co.	Intertidal
California		
1804-49	Campbell's Cove, Bodega Lagoon, Sonoma Co.	
1794-49	Campbell's Cove, Bodega Lagoon, Sonoma Co.	
1607-48	Dillon Beach, Marin Co.	
Adula diegensis (Dall)		
Oregon		
1484-42	W of Fossil Pt., Coos Bay	4-6 fms
1474-42	Charleston, N of bridge, mudflats on east side	Intertidal
California		
M 67-49	Bodega Lagoon, Sonoma Co.	
M 70-49	Bodega Lagoon, Sonoma Co.	
1794-49	Campbell's Cove, Bodega Lagoon, Sonoma Co.	
1815-49	North Jetty, Bodega Bay, Sonoma Co.	
1817-49	South Jetty, Bodega Bay, Sonoma Co.	
1607-48	Dillon Beach, Marin Co.	

O
O
~
Sand
(

M
Specimens
one
one
two small
one
nine, pieces
nineteen
eight
two
three
two
nine
one small
three
thirteen
one
one

one
two
five
eight
two
one
one
one
seven
one
four

Shallow water
8 fms
$13-16 \mathrm{fms}$
Shore

Depth
14 fms
$30-35 \mathrm{fms}$
Shallow
Shallow
$2-4 \mathrm{fms}$
Shallow water
Shallow water
$2-4 \mathrm{fms}$
дәјем мо॥ечS毕

$$
\begin{array}{ll}
\text { 435-35 } & \text { Bahía Octavia } \\
859-38 & \text { Puerto Utría }
\end{array}
$$

 Shallow water

Shore
Shore near stream
3 fms
Shallow water
Shallow water
Shallow water
Shore

1004-39 Bechers Bay, Santa Rosa I.
1660-48 1295-41 1 mi SE of Smugglers Cove, Santa Cruz I. Ani 5 of west

1193-40 Willow Anchorage, S side of Santa Cruz I. 1284-41 1 mi S of East Point, Santa Rosa I. 2.5 mi E of South Point, Santa Rosa I.

Puerto Utría Puerto Utría Puerto Utría

Puerto Utría
Bahía Cabita, Cabo Corrientes Off Isla Gorgona
Isla Gorgona
nomumintuntun
Galapagos Islands
357-35 Bahía de Gardner, Isla Española, (Hood I.) Lithophaga (Diberus) subula (Reeve)
California

1456-42 Monterey Bay
411-35 Isla Gorgona

1456-42	Monterey Bay
1004-39	Bechers Bay, Santa Rosa I.
1660-48	SW shore of Smugglers Cove, Santa Cruz I.
1415-41	1.5 mi E of Cardwell Pt., San Miguel I.
1295-41	1 mi SE of Smugglers Cove, Santa Cruz I.
1270-41	0.5 mi S of west end of Anacapa I.
1190-40	Anacapa Passage
1193-40	Willow Anchorage, S side of Santa Cruz I.
1284-41	$1 \mathrm{mi} \mathrm{S} \mathrm{of} \mathrm{East} \mathrm{Point} ,\mathrm{Santa} \mathrm{Rosa} \mathrm{I}$.
1280-41	2.5 mi E of South Point, Santa Rosa I. Long Wharf

Sand, mud
Coarse sand, shell
Low tide
Sand, loose and solid rock,
eel grass
Rocky shore
Rock, eel grass
Rocky and underlaid,
heavy covered sand
Brown mud
Rock
Mud bottom
Rock, kelp
Rocky
Rocky ledge, kelp
Sand, kelp

Off Point del Rey
Portguese Bend
Near Rocky Point
$\begin{array}{ll}1578-46 & 0.5 \text { mi off shore, } 2 \mathrm{mi} \text { W of Pt. Fermin } \\ 2320-53 & 2.2 \text { mi ESE of Los Angeles breakwater light } \\ \text { A } 615 & \text { Off Long Beach } \\ \text { Acc. } 605 & \text { Breakwater off Long Beach } \\ & \text { Outside hole 0.5 mi E of S from Long Beach } \\ 1232-41 & 5 \text { mi } 152^{\circ} \text { from San Pedro breakwater } \\ 1222-41 & \text { Newport and Balboa Channel } \\ 1224-41 & \text { Newport Channel, Balboa } \\ 1930-50 & \text { Corona del Mar } \\ & \\ 1572-46 & \text { Corona del Mar } \\ 2000-50 & \text { Newport Bay to Corona del Mar } \\ 1209-40 & \text { Laguna Beach } \\ & \\ 2049-51 & \text { 11 mi NE of Avalon, Catalina I. } \\ 1221-40 & \text { Avalon, Catalina I. } \\ & \text { Catalina Harbor } \\ 1153-40 & \text { E of Long Pt., Catalina I. } \\ \text { BS 1249 } & \text { Long Pt. to Willow Cove, Catalina I. } \\ 1406-41 & \text { N side, White Cove, Catalina I. } \\ 1363-41 & \text { White Cove, Catalina I. }\end{array}$
Mexico: Baja California, Pacific coast
$\begin{aligned} 1597-47 & \text { N of Punta Descanso, near Islas Coronados } \\ \text { 1594-47 } & \text { Punta Descanso } \\ 2603-54 & \text { 1.1 mi NW of Kelp Pt., Puerto de } \\ & \text { San Bartolomé } \\ 617-37 & \text { Off Punta Pequeña }\end{aligned}$
Specimens
three
one

one small
one
one
two
Specimens
Specimens
Specimens
Specimens
Specimens
Specimens
sixteen
one
thirteen
two
one living
one
one
three and one valve
one
two
six
two
two small
thirty-eight
nineteen
seven
one, in situ
Remarks
Boring in Acmaea
mexicana

Sand
Sand, coralline
Rock
Rock
Remarks
Remarks
Remarks
Remarks
Remarks
Remarks
Shingle
Sand
Sand, shell
Shale, gray mud
Sponges, mollusks
Lagoon entrance
Shingle
Rocky beach
Coral heads
Shingle
Coral
Coral
Rocks, pools
Reefs, rocks
Granite reef, pools, surf
rocks
Depth

Shore, mouth
of lagoon

60 fms
$6-11 \mathrm{fms}$
Shore
Shore
Depth
Depth
Depth
Depth
Depth
Depth
Shore, lagoon
and beach
Shore
45 fms
20 fms
165 fms
$1-10 \mathrm{fms}$
Shore
Shore
Eastern shore
Shore
1 fm
Shore
Shoal
Shallow water
Shore
Shore
Shore

台点岂

13 fms	Coralline，algae
Rocky shore	
Shallow water	Pocillopora coral
Shore	Rock，large shingle， tide pools
$0-2 \mathrm{fms}$	Rock
$1-4 \mathrm{fms}$	Rock，mud，sand Reef，rocks
Shallow water	Coral
Shore of granite headland	Rock
Shore of small island at entrance	Rock
3－5 fms	Sand，shells
Shore	Coral
Shallow water	Coral
Shore	Rock
Shallow water	Coral
Shore	Rock
Shore	Rock
Shallow water	Coral
Shallow water	Coral
$2-4 \mathrm{fms}$	Coral
Shallow water	Coral
Shore on island	Shingle
Shore	Reef inside outer island
Shallow water	Coral

970－39 Isla María Magdalena，Las Tres Marías

Specimens
three
one small
three small
six
one small
one
four small
twenty, one boring
in a sponge
two
one small
two
two
two, one with left
valve projection
lower
eleven
five
two
one, left valve
projection lower
two
one small
one

Shallow water
Shallow water
Shallow water Shallow water
$50-60 \mathrm{fms}$ $50-60 \mathrm{fms}$

Shore
Crater
Shallow
Shore
Shallow water
Shore

10-33 S of La Puntilla $\begin{array}{ll}\text { 12-33 Bahía de Santa Elena, off beach } \\ \text { 19-33 } & \text { Punta Brava, Bahía de Santa Elena }\end{array}$ Lithophaga (Labis) attenuata (Deshayes) , Landic S of Purita $\begin{array}{ll}\text { KG } 4 & \text { Laguna de Scammon } \\ \text { KG } 3 & \text { Laguna de Scammon }\end{array}$

three, boring in
Haliotis
many
号㑒
읃 릉
three
two
은
two
one 르ㅇㅡㅡㄴ ․ㅡㅇ

Shore	Rocky ledge, kelp
Shore, mouth of lagoon	
Shore	Rocky beach
13 fms	Rock
Shore	Sand, rock
Reef, 1-2 mi N	Sand, rock
45 fms	Sand
Eastern shore	Rock, sponges
3-5 fms	Sand, shells
Shallow water	Coral
15 fms	Mud, rock
Reef with breakers	
4 fms	Sand
Shore Rock	
10 fms	Sand, shell, algae
Shore	Rock
18 fms	Rock, sand, shell
15 fms	Mud, rock
10 fms	Sand, shell

603-54
127-33
Costa Rica Bahía del Tortuga
127-33 Bahía de Santa María
$\begin{array}{ll}\text { 1713-49 } & \text { Punta Entrada, Bahía de la Magdalena } \\ \text { 1718-49 } & \text { Canal de Marcy, Bahía de la Magdalena } \\ \text { 1719-49 } & \text { E shore of Isla Santa Margarita }\end{array}$

$$
\begin{array}{ll}
\text { Mexico: Gulf of California } \\
2623-54 & \text { Bahía de San Felipe } \\
559-36 & \text { S of Isla Partida } \\
1749-49 & \text { Puerto Escondido, S of Loreto }
\end{array}
$$

460-35 Bahía Playa Blanca
473-35 Puerto Parker, off Punta Abajo
850-38 Off Cabo de San Francisco
$\begin{array}{ll}\text { 400-35 } & \text { Bahía de Manta } \\ \text { 403-35 } & \text { W of Manta }\end{array}$
12-33 Bahía de Santa Elena, off La Libertad
821-38 Bahía de San Nicolás
Lithophaga (Labis) peruviana (Orbigny)
832-38 Bahía de la Independencia 835-38 Bahía de la Independencia
Lithophaga (Leiosolenus) spatiosa Carpenter
$\begin{aligned} 850-38 & \text { Off Cabo de San Francisco } \\ 15-33 & \text { Bahía de Santa Elena, off Salinas }\end{aligned}$
Ecuador
2603-54 1.1 mi NNE of Kelp Pt., Puerto de
Peru
Peru

Remarks

Coral
Coral
Pavona coral
Coral
Rock

$$
\begin{aligned}
& \text { Depth } \\
& \\
& \text { Shallow water } \\
& \text { Shore } \\
& \text { Crater } \\
& \text { Crater } \\
& 13 \mathrm{fms}
\end{aligned}
$$

REFERENCES CITED

Adams, Henry and Arthur Adams

1858. The Genera of Recent Mollusca; arranged according to their Organization. London. vol. 2, 661pp.
Argenville, A. J. Dezallier d'
1859. L'Histoire Naturelle éclaircie dans Deux de ses Parties Principales. La Lithologie et la Conchyliologie. Paris. 491pp., 33 pls.

Bartsch, Paul and H. A. Rehder

1939. Mollusks collected on the Presidential Cruise of 1938. Smithson. miscell. coll. $98(10), 18$ pp., 5 pls.
Benson, W. H.
1940. Mollusca. In Cantor, Theodore. General Features of Chusan, with remarks on the Flora and Fauna of that Island. Ann. and Mag. Nat. Hist. 9:486-490.
Bernard, Félix
1941. Recherches Ontogéniques et Morphologiques sur la Coquille des Lamellibranches. Première Partie. Taxodontes et Anisomyaires. Ann. des Sci. Nat. Zool. ser. 8, vol. 8:1-208, pls. 1-12.
Berry, S. S.
1942. Notices of New West American Marine Mollusca. San Diego Soc. Nat. Hist. Trans. 11(16) :405-428, pls. 28-29, figs. 1-10.
1943. On the Supposed Stenobathic Habitat of the California Sea-Mussel. Calif. Fish and Game 40:69-73.
Boone, Lee
1944. Mollusks from the Gulf of California and the Perlas Islands. Yale Univ. Bingham Oceanogr. Coll. Bul. 2 (5) :1-17, pls. 1-3.

Brown, Thomas

1827. Illustrations of the Conchology of Great Britain and Ireland. Edinburgh and London. 52 pls., with letterpress.
Bruguiere, J. G.
1828. Histoire Naturelle des Vers. (Encyclopédie Méthodique) Paris. vol. 1, 757 pp .
Cantraine, F. J.
1829. Diagnoses de quelques Espèces Nouvelles de Mollusques. Roy. Acad. des Sci. Nat. de Belgique. Bul. 2:380-401.
Carcelles, A. R.
1830. Catalogo de los Moluscos Marinos de la Patagonia. Mus. Nahue! Huapi Perito. Anales 2:41-100, pls. 1-6, 1 map.
Carcelles, A. R. y S. I. Williamson
1831. Catalogo de los Moluscos Marinos de la Provincia Magallanica. Inst. Nac. Invest. Cienc. Nat. Cienc. Zool. Rev. 2 (5) :225-383.
Carpenter, P. P.
1855-57. Catalogue of the Reigen Collection of Mazatlan Mollusca, in the British Museum. Warrington. xvi, 552pp.
1832. Monograph of the Shells collected by T. Nuttall, Esq., on the Californian Coast, in the years 1834-5. Zool. Soc. London. Proc. 24:209-229.
1833. Report on the Present State of our Knowledge with Regard to the Mollusca of the West Coast of North America. Brit. Assoc. Adv. Sci. Rpt. 26:159-368.
1834. Supplementary Report on the Present State of our Knowledge with Regard to the Mollusca of the West Coast of North America. Brit. Assoc. Adv. Sci. Rpt. 33 :517-686.
1835. Diagnoses of New Forms of Mollusks collected at Cape St. Lucas by Mr. J. Xantus. Ann. and Mag. Nat. Hist. ser. 3, vol. 13:311-315, 474479; vol. 14:45-49.
1836. Diagnoses of new Forms of Mollusca from the West Coast of North America, first collected by Col. E. Jewett. Ann. and Mag. Nat. Hist. ser. 3, vol. 15:177-182.
Carpenter, P. P. and A. A. Gould
1837. Descriptions of Shells from the Gulf of California, and the Pacific Coasts of Mexico and California. Part II. Zool. Soc. London. Proc. 24:198-208.
Chemnitz, J. H.
1838. In Martini, F. H. W. und Chemnitz, J. H. Neues systematisches Con-chylien-cabinet. Nürnberg. vol. 8, 372pp., pls. 70-102.
1839. Ibid., vol. 11, 310, 3, 124pp., pls. 174-213.

Clessin, S.
1889. Mytilidae. In Martini, F. H. W. und Chemnitz, J. H. Systematisches Conchylien-cabinet. Nürnberg. vol. 8 no. 3, 170pp., 36 col . pls.
Coe, W. R.
1945. Mytilus edulis diegensis, new subspecies. Conchol. Club Southern Calif. Minutes $48: 28$.

Conrad, T. A.

1833. Fossil Shells of the Tertiary Formations of North America. Philadelphia. 1832-33. 56pp., 20 pls.
1834. Descriptions of New Marine Shells, from Upper California. Acad. Nat. Sci. Phila. Jour. 7:227-268, pls. 17-20.
1835. Descriptions of New Genera, Sub-genera, and Species of Tertiary and Recent Shells. Acad. Nat. Sci. Phila. Proc. 14:284-291.
Cox, L. R.
1836. Notes on Jurassic Lamellibranchia. V. On a New Subgenus of Mytilus and a new Mytilus-like Genus. Malacol. Soc. London. Proc. 22:339348, pl. 17.
Crosse, J. C. H.
1837. Etudes sur les Mollusques Terrestres et Fluviatiles du Mexique et du Guatemala, par MM P. Fischer et H. Crosse. Famille des Mytilidae. vol. 2:496-505. In Mission Scientifique au Mexique et dans l'Amérique Centrale. Paris.

Cuvier, Georges

1817. Le Rè̀ge Animal distribué d'après son Organisation. Paris. vol. 2, xviii, 532 pp .
Dall, W. H.
1818. Descriptions of Sixty new Forms of Mollusks from the West Coast of North America and the North Pacific Ocean, with Notes on Others already Described. Amer. Jour. Conchol. 7:93-160, pls. 13-16.
1819. Mollusks. In Kidder, J. H. Contributions to the Natural History of Kerguelen Island. U. S. Natl. Mus. Bul. 3:42-48.
1820. A Preliminary Catalogue of the Shell-bearing Marine Mollusks and Brachiopods of the South-eastern Coast of the United States. U. S. Natl. Mus. Bul. 37, 221pp., 74 pls.
1821. On some Marine Mollusks from the Southern Coast of Brazil. Nautilus 5:42-44.
1822. Contributions to the Tertiary Fauna of Florida. Part III. Wagner Free Inst. Sci. Trans. 3(3):483-570.
1823. Notice of some New or Interesting Species of Shells from British Columbia and the Adjacent Region. Nat. Hist. Soc. Brit. Columbia. Bul. 2 (1) :1-18, pls. 1-2.
1824. Contributions to the Tertiary Fauna of Florida with Especial Reference to the Silex-Beds of Tampa and the Pliocene Beds of the Caloosahatchie River. Part IV. Wagner Free Inst. Sci. Trans. 3 (4) :viii, 571-947, pls. 23-35.
1825. Illustrations and Descriptions of New, Unfigured, or Imperfectly Known Shells, chiefly American, in the U. S. National Museum. U. S. Natl. Mus. Proc. 24:499-566, pls. 27-40.
1826. Descriptions of New Species of Shells, chiefly Buccinidae, from the Dredgings of the U. S. S. "Albatross" during 1906, in the Northwestern Pacific, Bering, Okhotsk, and Japanese Seas. Smithson. miscell. coll. 50:139-173.
1827. Report on a Collection of Shells from Peru, with a Summary of the Littoral Marine Mollusca of the Peruvian Zoological Province. U. S. Natl. Mus. Proc. 37 :147-294, pls. 20-28.
1828. Notes on California Shells. (II) Nautilus 24:109-112.
1829. Diagnoses of new Species of Marine Bivalve Mollusks from the Northwest Coast of America in the Collection of the United States National Museum. U. S. Natl. Mus. Proc. 52:393-417.
1830. Notes on the Californian Species of A dula. Nautilus $30: 1-3$.
1831. Summary of the Marine Shellbearing Mollusks of the Northwest Coast of America, from San Diego, California, to the Polar Sea, mostly contained in the collection of the United States National Museum, with Illustrations of hitherto Unfigured Species. U. S. Natl. Mus. Bul. 112, $217 \mathrm{pp} ., 22$ pls.
1832. Illustrations of unfigured Types of Shells in the Collection of the United States National Museum. U. S. Natl. Mus. Proc. 66(17), 41pp., 36 pls.
Dall, W. H., Paul Bartsch, and H. A. Rehder
1833. A Manual of the Recent and Fossil Marine Pelecypod Mollusks of the Hawaiian Islands. Bernice P. Bishop Mus. Bul. 153, iv, 233pp., 58 pls., 28 text-figs.
Dautzenberg, Philippe
1834. [Liste de Mollusques du Chili.] Soc. Sci. du Chili. Actes. 6:1xiv-1xvii. Deshayes, G. P.
1835. Lamarck, J. P. B. A. de Monet de. Histoire Naturelle des Animaux sans Vertèbres . . 2. éd. . . . par MM G. P. Deshayes et H. Milne Edwards. Paris. vol. 7, vi, 735 pp.

Dillwyn, L. W.

1817. A Descriptive Catalogue of Recent Shells, arranged according to the Linnaean Method. 2 vols., 1092[29]pp.

Dodge, Henry

1952. A Historical Review of the Mollusks of Linnaeus. Part 1. The classes Loricata and Pelecypoda. Amer. Mus. Nat. Hist. Bul. 100 (1) :1-263.

Dunker, Wilhelm

1853. Neue Mytilaceen. Zeitschr. f. Malakozool. 10:82-92.
1854. Mytilacea nova collectionis Cumingianae descripta a Giul. Dunker. Zool. Soc. London. Proc. 24:358-366.
1855. Die Gattung Lithophaga. In Martini, F. H. W. und Chemnitz, J. H. Systematisches Conchylien-cabinet. Nürnberg. vol. 8 part 3a, 32pp., 6 pls.

Fischer, P. H.

1886. Manuel de Conchyliologie et de Paléontologie Conchyliologique. Paris. 1880-1887. xxiv, 1369pp., 24 pls., text-figs.
Fitch, J. E.
1887. Common Marine Bivalves of California. Calif. Dept. Fish and Game. Fish bul. 90, 102pp., 63 figs.
Fletcher, H. O.
1888. Marine Tertiary Fossils and a Description of a Recent Mytilus from Kerguelen Island. In B. A. N. Z. Antarctic Research Expedition 19291931. Reports. ser. A, 2 (6):101-116, pls. 10-12.

Forbes, Edward
1838. Malacologia Monensis. Edinburgh. xii, 63 pp., 3 pls.

Gmelin, J. F.
1791. Linné, C. Systema Naturae per Regna Tria Naturae . . . ed. 13, aucta, reformata, cura J. F. Gmelin. Holmiae. vol. 1, part 6, pp. 3021-4120.
Gould, A. A.
1850. [Shells from the United States Exploring Expedition.] Boston Soc. Nat. Hist. Proc. 3:343-348.
1851. [Descriptions of a Number of California Shells, collected by Maj. William Rich and Lieut. Thomas P. Green, United States Navy.] Boston Soc. Nat. Hist. Proc. 4:87-93.
1852-56. Mollusca \& Shells. In United States Exploring Expedition . . . 18381842. Boston. vol. 12, xv, 510pp., 1852. Atlas, 1856.
1853. Descriptions of Shells from the Gulf of California and the Pacific Coasts of Mexico and California. Boston Jour. Nat. Hist. 6:374-408, pls. 14-16.
Grant, U. S. IV and H. R. Gale
1931. Catalogue of the Marine Pliocene and Pleistocene Mollusca of California and Adjacent Regions. San Diego Soc. Nat. Hist. Mem. 1, 1036pp.
Gray, J. E.
1824. Shells. In A Supplement to the Appendix of Captain Parry's Voyage for the Discovery of a North-west Passage, in the years 1819-20. London. pp. ccxl-ccxlvi.
1827. In King, P. P. Narrative of a Survey of the Intertropical and Western Coasts of Australia. Performed between . . . 1818 and 1822. London. vol. 2, App.
1843. Catalogue of the Species of Mollusca and their Shells, which have hitherto been recorded as found at New Zealand, with the Description of some lately discovered Species. In Dieffenbach, Ernest. Travels in New Zealand. London. vol. $2: 228-265$.
1847. A List of the Genera of Recent Mollusca, their Synonyma and Types. Zool. Soc. London. Proc. 15 :129-206.
Hanley, S. C. T.
1842-56. An Illustrated and Descriptive Catalogue of Recent Bivalve Shells. London. xviii, 392, 24pp., pls. 9-24.
1844. Description of New Species of Mytilacea, Amphidesma and Odostomia. Zool. Soc. London. Proc. 12:14-18.

Hanna, G. D.
1921. Modiolus demissus Dillwyn, in San Francisco Bay. Nautilus 34:91-92.

Hedley, Charles

1904. Studies on Australian Mollusca. Part VIII. Linn. Soc. N. S. Wales. Proc. 29:182-212, pls. 8-10.
1905. Results of Dredging on the Continental Shelf of New Zealand. Roy. Soc. New Zealand. Trans. 38 (for 1905) :68-76, pls. 1-2.
Hermann, J.
1906. Ueber einige Conchylien. Naturforscher 17:126-152, pl. 3.

Hertlein, L. G. and A. M. Strong
1946. Mollusks from the West Coast of Mexico and Central America. Part III. Zoologica [New York] 31 (2) :53-76, pl. 1.

Hilbert, Richard
1913. Ueber Mytilus edulis L. und seine Formen. Westpreuss. Bot.-Zool. Vereins. Ber. 35 :63-72, pl. 1.
Hupé, L. H.
1854. Moluscos. In Gay, Claudio. Historia Fisica y Politica de Chile. Zool. Paris. vol. 8:1-407.
Ihering, Hermann von
1900. On the South American Species of Mytilidae. Malacol. Soc. London. Proc. 4:84-98.
1907. Les Mollusques Fossiles du Tertiaire et du Crétacé Supérieur de l'Argentine. Buenos Aires. Mus. Nac. Anales. ser. 3, vol. 7, xiii, 611pp., 18 pls.
Iredale, Tom
1915. A Commentary on Suter's "Manual of the New Zealand Mollusca." Roy. Soc. New Zealand. Trans. 47 (for 1914) :417-497.
1924. Results from Roy Bell's Molluscan Collections. Linn. Soc. New South Wales. Proc. 49:179-278, pls. 33-36.
1936. Australian Molluscan Notes, No. 2. Austral. Mus. Rec. 19:267-340, pls. 20-24.
1939. Mollusca. Part I. In British Museum (Nat. Hist.) Great Barrier Reef Expedition 1928-29. Sci. Rpts. 5(6):209-425, pls. 1-7.
Jousseaume, F. P.
1893. Descriptions des Mollusques Nouveaux. Le Naturaliste. ser. 2, no. 15: 191-192, 1 fig.
Jukes-Browne, A. J.
1905. A Review of the Genera of the Family Mytilidae. Malacol. Soc. London. Proc. 6:211-224.
Keen, A. Myra
1937. An Abridged Check List and Bibliography of West North American Marine Mollusca. Stanford University, California. 84pp.
King, P. P. and W. J. Broderip
1831. Description of the Cirrhipeda, Conchifer and Mollusca, in a Collection formed by the Officers of H. M. S. Adventure and Beagle employed between the years 1826 and 1830 in surveying the Southern Coasts of South America, including the Straits of Magalhaens and the Coast of Tierra del Fuego. Zool. Jour. 5:332-349.
Klein, J. T.
1753. Tentamen methodi Ostracologicae, sive Dispositio Naturalis Cochlidum et Concharum. Lugduni Batavorum. viii, 177, 35, 44, 16, 2 pp., 12 pls.

Lamarck, J. B. P. A. de Monet de
1799. Prodrome d'une Nouvelle Classification des Coquilles. Soc. Hist. Nat. Paris. Mém. 1799:63-90.
1801. Système des Animaux sans Vertèbres. Paris. vii, 432pp.
1819. Histoire Naturelle des Animaux sans Vertèbres. Paris. vol. 6, 343pp.

Lamy, Edouard
1919. Les Moules et les Modioles de la Mer Rouge (d'après les Matériaux recueillis par M. le Dr. Jousseaume). Paris. Mus. Natl. d'Hist. Nat. Bul. 25 :40-45, 109-114, 173-178.
1919. Les Lithodomes de la Mer Rouge (d'après les Matériaux recueillis par M. le Dr. Jousseaume). Paris. Mus. Natl. d'Hist. Nat. Bul. 25:252-257.

1936-37. Révision des Mytilidae vivantes du Muséum National d'Histoire Naturelle de Paris. Jour. de Conchyl. $80: 66-102,107-198,229-295$, 307-363; 81:5-71, 99-132, 169-197.
Lang, C. N.
1722. Methodus Nova Testacea Marina in Classes, Genera et Species Distribuendi. Lucernae. 102pp.
Lea, Isaac
1833. Contributions to Geology. Philadelphia. 227pp., 6 pls.

Leach, W. E. and R. P. Nodder
1815. The Zoological Miscellany; being Descriptions of New, or Interesting Animals. vol. 2.
Linné, Carl von
1758. Systema Naturae per Regna Tria Naturae . . . Ed. 10. Holmiae, 175859. vol. 1.
1767. Systema Naturae per Regna Tria Naturae . . . Ed. 12. Holmiae, 176668. vol. 1, pt. 2.

Lischike, C. E.
1868. Diagnosen neuer Meeres-Konchylien von Japan. Malakozool. Blätter 15:218-222.
List, T.
1902. Die Mytiliden. In Fauna und Flora des Golfes von Neapel. Mon. 27, 312pp., 22 pls.
Lowe, H. N.
1935. New Marine Mollusca from West Mexico, together with a List of Shells Collected at Punta Peñasco, Sonora, Mexico. San Diego Soc. Nat. Hist. Trans. 8 (6) :15-32, pls. 1-4.
Martyn, Thomas
1784. The Universal Conchologist II. London. 4 vols., 1784-87.

Megerle von Muhlfeld, J. K.
1811. Entwurf eines neuen System's der Schalthiergehäuse. Ges. Naturf. Freunde, Berlin. Mag. f. d. neuesten entdeckungen in d. Ges. Naturk. 5:38-72.
Menke, K. T.
1849. Einige neue, theils Neuholländische und Mexicanische Mytilaceen meiner Sammlung. Ztschr. f. Malakozool. 5[1848]:1-6.
Middendorff, A. T. von
1849. Beiträge zu einer Malacozoologia Rossica, III. Akad. nauk SSSR. Mém. ser. 6, Sci. Nat., vol. 6:517-610, 21 pls.
Molina, G. I.
1782. Saggio sulla Storia Naturale del Chile. Bologna. 367 pp.

Möller, H. P. C.
1842. Index Molluscorum Groenlandiae. Hafniae. 24pp.

Montagu, George
1808. Testacea Britannica, or Natural History of British Shells, Marine, Land, and Fresh-water. London. Supplement, v, 183pp., pls. 17-30.
Monterosato, T. A. di
1884. Nomenclatura Generica e Specifica di alcune Conchiglie Mediterranee. Palermo. 152 pp .
Montford, P. Denys de
1810. Conchyliologie Systématique, et Classification Méthodique des Coquilles. Paris. vol. 2, 676pp., 161 pls.
Mörch, O. A. L.
1853. Catalogus Conchyliorum quae Reliquit D. Alphonso d'Aguirra \& Gadea, comes de Yoldi. Fasc. secundus. Acephala. Hafniae. 74pp.
1860-61. Beiträge zur Molluskenfauna Central-Amerika's. Malakozool. Blätter. 7:170-213.
Newele, N. D.
1942. Late Paleozoic Pelecypods; Mytilacea. Kansas Univ. Pub. State Geol. Surv. 10(2):1-115.

Nordmann, Alexander von

1862. Notiz ueber eine Riesenform der Miesmuschel aus den Russisch-Amerikanischen Besitzungen, Mytilus edulis, forma gigantea. Moskov. Obshch. estestvoisp. Bul. 35 (2) :408-425, pls. 10-12.
Oldroyd, Ida S.
1863. The Marine Shells of the West Coast of North America. Stanford Univ. Pubs. Univ. ser., Geol. Sci. 1 (1) :1-247, 57 pls.
Orbigny, Alcide d’
1846 Mollusques. Lamellibranches. In Voyage dans l'Amérique Méridionale. Paris, Strasbourg. 5(3) :489-758.
1864. Mollusques. 2 vols. and atlas. In Sagra, Ramon de la. Histoire Physique, Politique et Naturelle de l'Ile de Cuba. Paris.
Palmer, Katherine van Winkle
1865. Catalog of the First Duplicate Series of the Reigen Collection of Mazatlan Shells in the State Museum at Albany, New York. N. Y. State Mus. Bul. 342, 79pp., 1 pl.
Pelseneer, Paul
1866. Les Lamellibranches de l'Expédition du Siboga. Partie anatomique. In Siboga-Expeditie. Mon. 53a, 125pp., 26 pls.
Pennant, Thomas
1867. The British Zoology. 4th ed. Warrington, London. vol. 4, xvi, 379pp., 95 pls .
Philippi, R. A.
1845-51. Abbildungen und Beschreibungen neuer oder wenig gekannter Conchylien. Cassel. 3 vols.
1868. Testaceorum Novorum Centuria. Ztschr. f. Malakozool. 4:71-77, 84-96, 113-127.
Pilsbry, H. A. and H. N. Lowe
1869. West Mexican and Central American Mollusks collected by H. N. Lowe, 1929-31. Acad. Nat. Sci. Phila. Proc. 84:33-144, 17 pls.

Pilsbry, H. A. and A. A. Olsson
1935. New Mollusks from the Panamic Province. Nautilus 49:16-19, 1 pl.
1941. A Pliocene Fauna from Western Ecuador. Acad. Nat. Sci. Phila. 93:1-79, pls. 1-19.
Pilsbry, H. A. and W. J. Raymond
1898. Note on Septifer bifurcatus Conrad. Nautilus 12:69-71.

Prashad, B.
1932. Pelecypoda of the Siboga Expedition (Exclusive of the Pectinidae). In Siboga-Expeditie. Mon. 53c, 353pp., 9 pls.
Rafinesque, C. S.
1820. Monographie des Coquilles Bivalves Fluviatiles de la rivière Ohio. Ann. Gén. des Sci. Physiques, $5: 287-322,3$ pls.
Ravenel, Edmund
1861. Descriptions of new Recent Shells from the Coast of South Carolina. Acad. Nat. Sci. Phila. Proc. 1861 :41-44.
Recluz, C. A.
1842. Description de deux Coquilles Nouvelles. Revue Zool. 1842:305-307.
1848. Description d'un Nouveau Genre de Coquilles Bivalves nommé Septifère (Septifer). Revue Zool. 1848:275-279.
1849. Description d'un Nouveau Genre de Coquilles Bivalves nommé Septifère (Suite). Revue Zool. 1849:117-137.
Reeve, L. A.
1856-58. Conchologia Iconica: or, Illustrations of the Shells of Molluscous Animals. London. vol. 10, Mytilus, Modiola, Lithodomus (11, 11, 5 pls.)
Rehder, H. A.
1935. New Caribbean Marine Shells. Nautilus $48: 127-130$.

Retzius, A. J.
1788. Dissertatio Historico-Naturalis Nova Testaceaorum Genera. Lundae. iv, 23 pp .
Risso, Antoine
1825. Histoire Naturelle des Principales Productions de l'Europe Méridionale et Principalement de Celles des Environs de Nice et des Alpes Maritimes. Paris, Strasbourg. 5 vols.
Rochebrunne, A. T. de et J. Mabille
1889. Mollusques. In Mission Scientifique du Cap Horn. Paris. vol. 6(2), 143pp., 9 pls.
Robert, L. E.
1838-52. Zoologie et Médicine. Mollusques. In Gaimard, Voyage en Islande et au Groënland, exécuté pendant 1835-36 sur . . . la Recherche. Paris. iv, 211pp., 2 pls.
Röding, P. F.
1798. Museum Boltenianum . . . Pars secunda, continuens Conchylia sive Testacea Univalvia, Bivalvia et Multivalvia. Hamburgi. viii, 199pp.
Say, Thomas
1822. An account of some of the Marine Shells of the United States. Acad. Nat. Sci. Phila. Jour. 2:221-248, 257-276, 302-325.
1825. On a New Species of Modiola. Acad. Nat. Sci. Phila. Jour. 4:368-370, pl. 19.

Scacchi, Arcangelo
1836. Catalogus Conchyliorum Regni Neapolitani quae usque adhuc reprit. Napoli. 18pp.
Scopoli, G. A.
1777. Introductio ad Historiam Naturalem. Pragae. x, 506, 34pp.

Smith, A. G.
1944. Volsella senhausi Reeve. Conchol. Club Southern Calif. Minutes 39:18. Smith, E. A.
1885. Report on the Lamellibranchiata collected by H. M. S. Challenger during the years 1873-76. In Report on the Scientific Results of the Voyage of H. M. S. Challenger during the years 1873-76. Zool. 13, 341pp., 25 pls.
Soot-Ryen, Tron
1932. Pelecypods from Floreana (Sancta Maria) Galapagos Islands. Nyt Mag. f. Naturvidenskab. 70:313-324.
1952. Choromytilus, a new genus in the Mytilidae. Soc. Malacol. "Carlos de la Torre." Rev. 8(3):121-122.
Sowerby, James
1830. The Genera of Recent and Fossil Shells. 1820-[34]. 2 vols.

Stearns, R.E.C.
1891. List of Shells collected on the West Coast of South America, principally between latitudes $7^{\circ} 30^{\prime} \mathrm{S}$. and $8^{\circ} 49^{\prime} \mathrm{N}$., by Dr. W. H. Jones. U. S. Natl. Mus. Proc. 14:307-335.

Stempell, Walter
1902. Die Muscheln der Sammlung Plate. Zool. Jahrb. Suppl. Bd. 5:217-250.

Stewart, R. B.
1930. Gabb's California Cretaceous and Tertiary Type Lamellibranchs. Acad. Nat. Sci. Phila. Spec. Pub. 3, 314pp., 17 pls.
Stimpson, William
1851. Shells of New England. A Revision of the Synonymy of the Testaceous Mollusks of New England. Boston. 58pp., 2 pls.
Stoliczka, Ferdinand
1871. Cretaceous Fauna of Southern India. vol. 3: The Pelecypoda, with a Review of all Known Genera of this Class, Fossil and Recent. India. Geol. Surv. Palaeontologica Indica. ser. 6, 537 pp., 50 pls.
Strong, A. M. and G. D. Hanna
1930. Marine Mollusca of the Tres Marias Islands, Mexico. Calif. Acad. Sci. Proc. ser. 4, vol. 19:13-22.
Strong, A. M. and L. G. Hertlein
1937. The Templeton Crocker Expedition . . . 1932. No. 35. New Species of Recent Mollusks from the Coast of Western North America. Calif. Acad. Sci. Proc. ser. 4, vol. 22:159-178, pls. 34-35.
Swainson, William
1840. A Treatise on Malacology; or, The Natural Classification of Shells and Shell-fish. London. viii, 419 pp .
Tapparone-Canefri, Cesare
1874. Zoologia del Viaggio intorno al globo della R. Fregata Magenta durante gli anni 1865-68. Malacologia. Accad. Sci. Torino. Mem. ser. 2, vol. 28: 109-265, 4 pls.

Tate, Ralph
1897. On the Discovery of a Recent Species of Arcoperna. Malacol. Soc. London. Proc. 2:181-182, text-fig.
Thiele, Johannes
1935. Handbuch der systematischen Weichtierkunde. Jena. vol. 2:779-1154, text-figs.
Tomlin, J. R. le B.
1928. The Mollusca of the "St. George" Expedition. (I.) The Pacific Coast of S. America. Jour. of Conchol. 18:187-198.
Torell, O. M.
1859. Bidrag till Spitsbergens Molluskfauna. Stockholm. 154pp., 2 pls.

Verco, J. C.
1908. Notes on South Australian Marine Mollusca, with Descriptions of Newr Species. Part VIII. Roy. Soc. South Austral. Trans. and Proc. 32 :193202, pls. 11-13.
Verrill, A. E.
1880. Notice of the Remarkable Marine Fauna occupying the Outer Banks off the Southern Coast of New England. Amer. Jour. Sci. ser. 3, vol. 20:390-403.
1882-85. Second [and Third] Catalogue of Mollusca recently added to the Fauna of the New England Coast and the Adjacent parts of the Atlantic. Conn. Acad. Sci. Trans. 6:139-294, 395-452.
Verrile, A. E. and Katherine J. Bush
1900. Additions to the Marine Mollusca of the Bermudas. Conn. Acad. Sci. Trans. 10:513-544, pls. 63-65.
White, Kathleen M.
1937. Mytilus. Liverpool Univ. Marine Biol. Sta., Port Erin. Mem. 31. vii, 117pp., 10 pls.
1949. Musculus lebourae, new species. Malacol. Soc. London. Proc. 28:46-49, pl. 3A.
PLATES

PLATE 1

Fig. 1. Mytilus edulis Linné 1758. San Pedro. Common low form. Length: 38.6 mm .
Fig. 2. Mytilus edulis Linné 1758. Mission Bay; San Dicgo. High form (diegensis Coe). Length: 62 mm .
Fig. 3. Mytilus califormianus Conrad 1837. San Pedro. Narrow worn form from surf zone. Length: 62.2 mm .
Fig. t. Mytilus californianus Conrad 1837. San Pedro. High bay form. Length: $7^{5} \mathrm{~mm}$.
Fig. 5. Choromytilus palliopunctatus (Carpenter) 1855. Salina Cruz, Oaxaca, Mexico, Length : 65 mm .
Fig. 6. Aulacomya ater (Molina) 1782. Off Middle Chincha Island, Peru. Length : 105 mm .

PLATE 2

Fig. 7. Choromytilus chorus (Molina) 1782. Chile. (Chace collection) Length: 115 mm .
Fig. 8. Choromytilus chorus (Molina) 1782. Chile. (Chace collection) Inside, showing partly separated posterior retractor scars and pittings in the ventral half of the valve. Length: 128 mm .
Fig. 9. Crenomytilus grayanus (Dunker) 1853. Japan. (San Diego Museum) Length: 111 mm .
Fig. 10. Crenomytilus grayanus (Dunker) 1853. Japan. (San Diego Museum) Enlarged part of ventral margin showing the fine crenulations.

PL.ATE 3

Fig. 11. Hormomya adamsiana (Dunker) 1856. Santa Cruz Island. Length: 15.8 mm .
Fig. 12. Hormomya granulata (Hanley) 1843. Bahía de la Independencia, Peru. Length 11 mm .
Fig. 13. Brachidontes multiformis (Carpenter) 1855. Mazatlán, Sinaloa, Mexico. Length : 8.8 mm .
Fig. 14. Brachidontes puntarenensis (Pilsbry and Lowe) 1932. Paratype. (Chace collection) Punta Arenas, Golfo de Fonseca, Costa Rica. Length: 11.7 mm .
Fig. 15. Brachidontes houstonius Bartsch and Rehder 1939. Northeast point of Isla Narborough, Galapagos Islands. Length: 8 mm .
Fig. 16. Brachidontes playasensis (Pilsbry and Olsson) 1935. Bahía de Santa Elena, Ecuador. Length 8 mm .

Fig. 17. Semimytilus algosus (Gould) 1850. North Chincha Island, Peru. Length: 28 mm .
Fig. 18. Brachidontes purpuratus (Lamarek) 1819. Bahía de la Independencia, Peru. Length: 25 mm .
Fig. 19. Septifer bifurcatus (Conrad) 1837. Near Point Fermin, California. Elongate and worn specimen. Length: 33 mm .
Fig. 20. Septifer lifurcatus (Conrad) 1837. (? Bahía de la Independencia, Peru. Label certainly wrong.) Fine regular form. Length 18.8 mm .
Fig. 21. Septifer zeteki Hertlein and Strong 1946. Bahía de Gardner, Isla Española, (Hood Island), Galapagos Islands. Length: 9 mm .

Fig. 22. Mytella guyanensis (Lamarck) 1819. San Felipe, Gulf of California. Length: 61 mm .
Fig. 23. Mytella yuyanensis (Lamarck) 1819. San Felipe, Gulf of California. Enlarged part of the resilial ridge, showing the pittings; the ligament is seen on the top.
Fig. 24. Mytella falcata (Orbigny) 18+6. Chacahua, Laguna de Oaxaca, Mexico. Dark colored specimen. Length: 35 mm .
Fig. 25. Mytella speciosa (Reeve) 1857. Bahia de la Magdalena, Baja California. (San Diego Mustum) Length: 51.5 mm .

PLA'TE 6

Fig. 26. Modiolus fornicatus (Carpenter) 1864. Monterey (Chace collection) Length: 34 mm .
Fig. 27. Modiolus americanus (Leach) 1815. Isla La Plata, Ecuador. Length: 15.4 mm .
Fig. 28. Modiolus americanus (Leach) 1815. Bahía de Santa Maria, Baja California. Length : 29 mm .
Fig. 29. Modiolus eiseni Strong and Hertlein 1937. Boca de Culebra, Costa Rica. Length: 11.8 mm .
Fig. 30. Modiolus capax (Conrad) 1837. Newport Channel, California. Length: 36 mm .

PLATE 7

Fig. 31. Modiolus neglectus n. sp. Holotype. San Diego, California. Length: 88 mm .
Fig. 32. Modiolus neglectus n.sp. Holotype. San Diego, California. Dorsal view.
Fig. 33. Modiolus rectus (Conrad) 1837. San Pedro, California. (Chace collection) Typical young specimen. Length: 75 mm .
Fig. 34. Modiolus rectus (Conrad) 1837. San Pedro, California. (California Institute of Technology) Large elongate form often named flabellatus Gould 1850. Length: 170 mm .
Fig. 35. Modiolus rectus (Conrad) 1837. San Pedro, California. (California Institute of Technology) Large specimen, very close to the figure of the holotype of fabellatus Gould 1850. Length: 137 mm .

PLATE 8

Fig. 36. Amy'ydalum pallidulum (Dall) 1916. South side of Santa Cruz Island, California. Length : 10.6 mm .
Fig. 37. Imygdalum americanum n.sp. Holotype. Isla Gorgona, Colombia. Length: 21 mm .
Fig. 38. Lioberus salvadoricus (Hertlein and Strong) 1946. Boca de Culebra, Costa Rica. A juvenile specimen. Length: 3.8 mm .

Fig. 39. Musculus olivaceus Dall 1916. 35 miles W of Depoe Bay, Oregon. Length: 11 mm .
Fig. +0. Gregariella chenui (Recluz) 1842. Santa Catalina Island, California. Length: 6.3 mm .
Fig. +1. Dacrydium (Ouendreda) clegantulum n. sp. Holotype. Bahía de Gardner, Isla Española (Hood Island), Galapagos Islands. Length : 2.4 mm .
Fig. +2. Crenella divaricata (Orbigny) 1853. Huntington Beach, California. Hinge.
Fig. +3. Crenella decussata (Montagu) 1808. Sör-Varanger, Norway. (Los Angeles County Museum) Hinge.
Fig. Ht. Crenella divaricata (Orbigny) 1853. Huntington Beach, California. Length: 3 mm .
Fig. 45. Crenella decussata (Montagu) 1808. Sör-Varanger, Norway. (Los Angeles County Museum) Length: 3.5 mm .
Fig. +6. Solamen columbianum (Dall) 1897. Santa Catalina Island, California. Length: 14.3 mm .

PLATE 9

Fig. 47. Ircuatula demissa (Dillwyn) 1817. Newport Bay, California. (Mr. L. C. Bessom coll.) Length: 90 mm .
Fig. +8. Gregariclla coarctata (Carpenter) 1856. Laguna de Scammon, Baja California. Length: 17 mm .
Fig. 49. Adula falcata (Gould) 1851. Point Fermin, California. Length: $+2 .+\mathrm{mm}$.
Fig. 50. Adula californicnsis (Philippi) 1847. Coos Bay, Oregon. Length: 43.2 mm .
Fig. 51. Adula diegensis (Dall) 1911. Bodega Lagoon, Sonoma County, California. Length: 25 mm .
Fig. 52. Botula fusca (Gmelin) 1791. North of Isla Tortuga, Yenezuela. Length: 13 mm .

PLATE 10

Fig. 53. Lithophaga (Myoforceps) aristata (Dillwyn) 1817. Central America. Strongly projecting incrustation. Length: 23.8 mm .

Fig. 54. Lithophaga (Myoforceps) aristata (Dillwyn) 1817. Isla Gorgona, Colombia. Incrustation without typically projecting part. Length: $2+\mathrm{mm}$.
Fig. 55. Lithophaga (Diberus) plumula (Hanley) 1843. Playa Blanca, Costa Rica. Length: +1.2 mm .
Fig. 56. Lithophaga (Diberus) subula (Reeve) 1857. Smugglers Cove, Santa Cruz Island, California. Length: it mm.
Fig. 57. Lithophaya (Labis) attenuata (Deshayes) 1836. Puerto de San Bartolomé, Baja California. Length: 80 mm .
Fig. 58. Lithophaya (Labis) peruviana (Orbigny) 1846. Bahía de la Independencia, Peru. Length: 59 mm .
Fig. 59. Lithophaga (Leiosolenus) spatiosa (Carpenter) 1856. Off Cabo de San Francisco, Ecuador. The vertical rows of pustules indicate rugifera Carpenter 1856. Length: 18 mm .
Fig. 60. Lithophaga (Leiosolenus) hancocki n.sp. Holotype. Isla Onslow, north of Isla Floreana (Charles Island), Galapagos Islands. Length: 32 mm .
Fig. 61. Lithophaga (Stumpiella) calyculata (Carpenter) 1856. Bahía Sulphur, Isla Clarión, Mexico. Lateral view. Length: 16 mm .
Fig. 62. Lithophaga (Stumpiella) calyculata (Carpenter) 1856. Dorsal view, showing the dorsal opening in the incrustation. Length: 16 mm .
Fig. 63. Lithophaga (Stumpiella) calyculata (Carpenter) 1856. Ventral view, showing the ventral opening in the incrustation. Length: 16 mm .

A REPORT ON THE FAMILY ARCIDAE (Pelecypoda)

(Plates 11-16; Text-figures 79-95)

COMCELLEU

THE UNIVERSITY OF SOUTHERN CALIFORNIA PRESS
LOS ANGELES, CALIFORNIA

A REPORT ON THE FAMILY ARCIDAE (Pelecypoda)

(Plates 11-16; Text-figures 79-95)

BY
HELEN ROST

The University of Southern California Publications
 Allan Hancock Pacific Expeditions
 Volume 20, Number 2
 Issued November 10, 1955
 Price $\$ 1.75$
 The University of Southern California Press
 Los Angeles, California

TABLE OF CONTENTS

Preface 177
Introduction 178
Family ARCIDAE 179
Subfamily ARCINAE 179
Genus Arca Linné 1758 179
Arca pacifica (Sowerby) 1833 179
Arca mutabilis (Sowerby) 1833 180
Genus Barbatia Gray 1842 180
Subgenus Barbatia s. s. 182
B. (Barbatia) lurida (Sowerby) 1833 182
Subgenus Cucullaearca Conrad 1865 184
B. (Cucullaearca) reeveana (Orbigny) 1846 185
Subgenus Calloarca Gray 1857 186
B. (Calloarca) alternata (Sowerby) 1833 186
Subgenus Fugleria Reinhart 1937 187
B. (Fugleria) illota (Sowerby) 1833 187
Genus Acar Gray 1857 188
Acar gradata (Broderip and Sowerby) 1829 189
Acar bailyi Bartsch 1931 190
Acar pusilla (Sowerby) 1833 191
Genus Arcopsis von Koenen 1885 192
Arcopsis solida (Sowerby) 1833 192
Subfamily ANADARINAE Reinhart 1935 193
Genus Anadara Gray 1847 193
Subgenus Anadaras. s. 195
A. (Anadara) tuberculosa (Sowerby) 1833 195
Subgenus Larkinia Reinhart 1935 195
A. (Larkinia) grandis (Broderip and Sowerby) 1829 195
A. (Larkinia) multicostata (Sowerby) 1833 196
Subgenus Scapharca Gray 1847 196
A. (Scapharca) reinharti (Lowe) 1935 198
A. (Scapharca) cumingiana (Nyst) 1848 200
A. (Scapharca) biangulata (Sowerby) 1833 201
A. (Scapharca) aviculaeformis (Nyst) 1848 202
A. (Scapharca) emarginata (Sowerby) 1833 203
A. (Scapharca) obesa (Sowerby) 1833 205
Subgenus Cunearca Dall 1898 205
A. (Cunearca) nux (Sowerby) 1833 205
A. (Cunearca) aequatorialis (Orbigny) 1846 206
Genus Lunarca Gray 1842 208
Lunarca vespertina (Mörch) 1861 209
Lunarca sp. 210
Subfamily NOETIINAE Stewart 1930 210
Genus Noetia Gray 1857 211
Noetia reversa (Sowerby) 1833 211
Genus Sheldonella Maury 1917 211
Sheldonella delgada (Lowe) 1935 212
List of material 213
References 232
Plates 11-16 237

PREFACE

The material in the Allan Hancock Foundation contains a very valuable collection of marine mollusks from the Pacific coast of America. I am extremely grateful that I have been allowed to work out the family Arcidae and present the result of my work in this paper.

I beg herewith to render my best thanks to Captain Allan Hancock and the Research Committee of the Allan Hancock Foundation for giving me the opportunity to work as a Research Fellow of the Foundation.

I wish also to express my thanks to the following members of the Allan Hancock Foundation staff: the editor, Mrs. Dorothy M. Halmos, to whom I am extremely indebted for her help in preparing the paper for publication; Dr. Norman T. Mattox, who placed the material in my hands and helped me in different ways during the work; Miss Janet Haig, who kindly corrected my manuscript; Mr. Gaylen C. Hansen, who with great interest and care made the drawings; and Mr. Roy V. George, who made the photographs for the plates. I am also indebted to Dr. S. Stillman Berry, Redlands, Dr. Leo G. Hertlein, California Academy of Sciences, Dr. A. Myra Keen, Stanford University, and Mr. E. P. Chace, San Diego Museum of Natural History, for the use of their collections for comparison. I also wish to thank Dr. E. Reilly, New York State Museum, Albany, for his efforts in trying to locate some of Carpenter's specimens. For discussion and supervision, I am greatly indebted to my principal, Director Tron Soot-Ryen, of Troms ϕ Museum, Norway.

INTRODUCTION

The purpose of this survey was to study the collection of the family Arcidae from the west coast of America and the Galapagos Islands, collected for the Allan Hancock Foundation during the cruises of the Velero III and the Velero IV from southern California to northern Peru and the Galapagos Islands.

Twenty five species are present in the material. Descriptions of most of these species will be found in Maury (1922) and in Hertlein and Strong (1943). A complete review of the Mesozoic and Cenozoic Arcidae from the Pacific Slope of North America, with numerous illustrations, is given by Reinhart (1943). A good bibliography for the family is also included in his paper. The synonymies will be found fairly complete in Maury (1922). Anatomical studies of five of the species present have been made by Heath (1941). One or more samples of nineteen of the species are preserved in alcohol. The following six species are represented by dried material only: Barbatia (Calloarca) alternata (Sowerby), Acar pusilla (Sowerby), Anadara tuberculosa (Sowerby), A. (Larkinia) grandis (Broderip and Sowerby), A. (Scapharca) cumingiana (Nyst), and Sheldonella delgada (Lowe). The circumstances did not allow a detailed anatomical study. However, easily seen characters, such as the presence of eye-spots on the mantle margin, and of a byssus, have been described. Schematical drawings have been made of the general appearance of the soft parts from the lateral and dorsal sides, and of the abdominal sense organs.

The systematic arrangement is, with a few changes, that of Reinhart (1943). The subfamily Noetiinae is retained in the family Arcidae.

The number of species has been too small to allow a revision of the systematics of the family. For that, it will be necessary in the future to make more comparisons with species from the Atlantic coast of America, as well as from the western Pacific.

Family Arcidae
 Subfamily Arcinae

Genus ARCA Linné 1758

Arca Linné, Systema naturae, ed. 10, p. 693.
Type of genus: Arca noae Linné 1758 (by action of the International
Commission on Zoological Nomenclature, Oct. 5, 1944. Opinion 189)

Subgenus ARCA s.s.
Arca (Arca) pacifica (Sowerby) 1833
Byssoarca pacifica Sowerby, Proc. Zool. Soc. London, 1833, p. 17. Fig.: Maury, 1922, Pl. 1, fig. 15; Reinhart, 1943, Pl. 14, figs. 3, 4. Anatomy: Heath, 1941.
Type loc.: Santa Elena, Ecuador ; 6-18 fms.
Holotype: British Museum?
Remarks: This species is extremely variable in form and shell proportions. The posterior expansion is sometimes not very pronounced. Usually, the projection of the posteroventral expansion reaches behind the posterodorsal one. Several authors state that A. (Arca) pacifica is more expanded posteriorly than is the closely related A. (Arca) zebra (Swainson) ($=$ occidentalis Philippi) from the Caribbean. This character, however, is not constant, as a specimen of A. (Arca) zebra may sometimes be more expanded posteriorly than a specimen of A. (Arca) pacifica of the same size. It seems difficult to find a really good character to distinguish the two species.

The maximum height of the shell usually has to be measured perpendicular to the posterior part of the shell. Some specimens, however, may have the maximum height perpendicular to the umbo.

The anatomy of this species has been studied by Heath (1941), so only a few observations will be mentioned here. The mantle margin is furnished with eye-spots except for the part where the byssus emerges. The margin is also pigmented with brown spots, and so are the ventral part of the foot and the extreme posterior part of the gills.

The largest specimen in this material measures 128 mm in length, 72 mm in height, and 80.5 mm in diameter. It is from the Gulf of California and was dead when dredged.

Occurrence: Living specimens were dredged between 2 and 50 fms. The bottom usually consisted of sand, shells, and rocks, and the specimens were attached to rocks, shells, corals, or to each other.
Distribution: Laguna de Scammon, Baja California, and the Gulf of California, to Payta, Peru. Also found in the Galapagos Islands, according to Hertlein and Strong (1943).

Arca (Arca) mutabilis (Sowerby) 1833
Pl. 11, figs. 1-2; text-figs. 79, 80 a-c
Byssoarca mutabilis Sowerby, Proc. Zool. Soc. London, 1833, p. 17.
Fig.: Reinhart, 1943, Pl. 11, figs. 8-10.
Type loc.: Isla La Plata, Ecuador; under stones.
Holotype: British Museum?
Remarks: Two specimens are figured to show the variation of the ligamental area (Pl. 11, figs. 1-2). Text-fig. 79 shows the arrangement of the periostracum in a beautifully preserved specimen. The periostracum is yellowish-brown, foliaceous and serrated ; it is usually better developed on the umbonal keel and is not so easily worn off on this part of the shell.

Eye-spots are present around the whole mantle margin. They are rather large posteriorly, and very small elsewhere.

The largest specimen in the collection, obtained by shore collecting in the Gulf of California, has a length of 41.2 mm . Other measurements would not be accurate, as the specimen is very eroded.
Occurrence: The common habitat for this species is under rocks at low tide, but it is occasionally dredged down to 45 fms (reported by Hertlein and Strong, 1943). One sample in the material at hand contains 14 specimens from the Galapagos Islands. They are typical Arca mutabilis and not Arca ventricosa Lamarck 1819 ($=$ truncata (Sowerby) 1833), which has been reported from the Galapagos Islands.
Distribution: Bahía de la Magdalena, west coast of Baja California, and the Gulf of California to Ecuador (Hertlein and Strong, 1943). Galapagos Islands. In the Pleistocene of Ventura County, California (Reinhart, 1943).

Genus BARBATIA Gray 1842

Barbatia Gray, Synopsis of the Contents of the British Museum, ed. 44, 1842, p. 81.
Type of genus: Arca barbata Linné 1758. (Subsequent designation by Gray, 1847, p. 197).

79

Fig. 79. Arca mutabilis (Sowerby) 1833. Puerto Parker, Costa Rica. Shell with periostracum seen from the posterodorsal side. Length, 20 mm .

Fig. 80. Arca mutabilis (Sowerby) 1833. Isla Isabel, Gulf of California. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 30.8 mm .

Subgenus BARBATIA s.s.

Remarks: The differences between this group and subgenus Cucullaearca Conrad are discussed under the latter group.

I have examined two species belonging to this subgenus, B. (Barbatia) cancellaria (Lamarck) from Florida, and B. (Barbatia) lurida (Sowerby) from Baja California. They were both furnished with pigmented eye-spots along the whole mantle margin, especially abundant in the posterior and extreme anterior part. Patten (1886, p. 550) counted between 400 and 500 eye-spots on B. (Barbatia) barbata (Linné) from the Mediterranean. This arrangement is different from that found in Cucullaearca (see under this subgenus).

Heath (1941) has studied the anatomy of "Barbatia barbata" from Florida, which is probably B. (Barbatia) cancellaria (Lamarck) 1819 ($=$ listeri (Philippi) 1849, not Lamarck, Kobelt 1891). This may explain the difference Heath found in the stomach feature (p. 294) from the B. barbata examined by Matthias (1914), who had specimens from the Mediterranean. B. (Barbatia) barbata (Linné) occurs only in the Mediterranean. Several authors, however, have reported it from the Caribbean, e.g., Sheldon (1916), who gives some illustrations of "Barbatia barbata" from the West Indies (Pl. 2, figs. 5-7). Reinhart (1935, p. 25-26) did not recognize Sheldon's species, but said it must belong to the subgenus Obliquarca Sacco 1898 or at least to a closely related group, because of the arrangement of the ligament in Sheldon's figure 7. This may be the same condition found in B. (Cucullaearca) reeveana (Orbigny) (see Pl. 11, fig. 5b), small specimens of which have the ligament only behind the umbones, although it occupies the whole cardinal area in adult specimens.

Barbatia (Barbatia) lurida (Sowerby) 1833

Pl. 11, figs. $3 \mathrm{a}-\mathrm{b}$; text-figs. $81 \mathrm{a}-\mathrm{c}$
Byssoarca lurida Sowerby, Proc. Zool. Soc. London, 1833, p. 19.
Syn.: ?Byssoarca vespertilio Carpenter 1856.
?Byssoarca fusca Carpenter 1856.
?Barbatia solidula Dunker 1868.
Type loc.: Santa Elena, Ecuador; 12 fms ; attached to stones, rocky ground. (Byssoarca vespertilio: Mazatlán, Mexico)
Holotype: British Museum?
Remarks: Byssoarca vespertilio Carpenter is quite probably a synonym of Barbatia lurida (see discussion by Maury, 1922, pp. 12-13, and

Fig. 81. Barbatia lurida (Sowerby) 1833. Isla Espíritu Santo, Gulf of California. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 28.7 mm .
Fig. 82. B. (Cucullaearca) reeveana (Orbigny) 1846. South Seymour Island, Galapagos Islands. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 52.5 mm .
Fig. 83. B. (Fugleria) illota (Sowerby) 1833. Off Puerto Escondido, Gulf of California. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 25 mm .

Reinhart, 1943, p. 30), but the type must be examined to settle the question properly. Although Palmer (1951) lists Byssoarca vespertilio (no. 192) as present among the first duplicate series of the Reigen Mazatlan Collection deposited by Carpenter in the New York State Museum in Albany, it has been impossible to locate the sample in the Museum. Byssoarca fusca, reported from Mazatlán by Carpenter (1856a, p. 140), might perhaps be Barbatia lurida also.

The shells at hand have a white ray radiating from the umbo, similar to that of the Caribbean species Barbatia cancellaria (Lamarck). The periostracum fits the description of Byssoarca vespertilio given by Carpenter (1856a, p. 141), and is soft and lamellose anteriorly. The bristles may be more or less worn off, especially on the median part.

Small and large eye-spots are present around the whole mantle margin. The posterior part of the mantle margin is especially heavily pigmented. Also pigmented are the foot, the anal region, and the posterior part of the gills. The abdominal sense organs are of the same type as those of "Barbatia barbata" ($=$ cancellaria (Lamarck) 1819) (Heath, 1941, Pl. 5, fig. 10). Measurements of the largest specimen in the present collection (1737-49) are length, 38.6 mm ; height, 21.5 mm ; diameter, 17.2 mm .
Occurrence: Rather rarely taken in the intertidal zone down to 12 fms , attached to rocks.
Distribution: Isla Espiritu Santo, Gulf of California, to Zorritos, Peru (the Peru locality reported by Olsson, 1924). The Galapagos Islands (one valve in the present material).

Subgenus CUCULLAEARCA Conrad 1865

Cucullaearca Conrad, Amer. Jour. Conch., vol. 1, 1865, p. 11.
Type of subgenus: Byssoarca lima Conrad 1847. (Subsequent designation by Stoliczka, 1871, p. 340)
Remarks: The main characters distinguishing this group from Barbatia s. s., according to Reinhart (1935), are a wider ligamental area, larger byssal gape, and posterior enlargement in outline. A posterior enlargement in outline cannot be used as a subgeneric character, as the form is extremely variable.

According to Heath (1941), who had only a few species for examination, the anatomy did not show any distinguishing characters between Barbatia s. s. and Cucullaearca.

I have examined B. (Cucullaearca) reeveana (Orbigny), the Pacific coast species, and the Atlantic species B. (Cucullaearca) candida (Helbling). Both had only one distinct eye-spot on the anterior part of each mantle margin. A similar arrangement of eyes was found by Pelseneer (1911, Pl. 3, fig. 4) in B. (Cucullaearca) nivea (Chemnitz), a species belonging to the same group. As mentioned before, species belonging to Barbatia s. s. seem to have heavily pigmented mantle margins with eyespots all around.

Subgenus Cucullaearca, therefore, seems to constitute a supraspecific unit.

Barbatia (Cucullaearca) reeveana (Orbigny) 1846

Pl. 11, figs. 4, 5, 9 ; text-figs. 82 a-c
Arca recveana Orbigny, Voyage dans l'Amérique Méridionale, vol. 5, pt. 3, 1846, pp. 635-636. New name for Arca helblingii Bruguière, Reeve 1844 (Conch. Icon., vol. 2. Arca, species 90). Not Arca helblingii Bruguière 1792.
Syn.: ?Barbatia nova Mabille 1895.
Fig.: Maury, 1922, Pl. 2, figs. 13, 15-17 ; Reinhart, 1943, Pl. 15, figs. 1-3.
Type loc.: Santa Elena, Ecuador (designated by Hertlein and Strong, 1943).

Holotype: British Museum ? (Reeve's specimen)
Remarks: Sheldon and Maury in Maury, 1922, have described two varieties of this species, lasperlensis and velataformis. These varieties are not taken into consideration in this paper, as Barbatia (Cucullaearca) reeveana is variable in form depending upon its environment and so the separation of different forms has no value. The shell is shaped according to the place of its attachment and the space it has at its disposal. Maury (1922, Pl. 2, figs. 13, 15, 17) gives figures of specimens with variations in form. The number of posterior ribs is also variable, but seven coarse ribs can usually be counted. The sinus for the byssal gape is usually larger in the right valve. Sometimes, in small and in unworn specimens, one of the valves is complete, with the byssal gape cut in the other valve only.

The periostracum consists of dark brown spinelike projections, sometimes in pairs arranged in concentric rows (Pl. 11, fig. 4). The "spines" are connected by a thin brownish-yellow membrane and become very stiff on the posterior part of the shell.

In small specimens the ligament is yellowish-brown and is present only posterior to the umbones (PI. 11, fig. 5b), while in full grown animals it becomes darker and occupies the entire cardinal area.

The prodissoconch may be easily seen in small specimens (Pl. 11, fig. 9). It is yellow and distinctly set off from the rest of the shell by its color. Its shape is round to triangular, inflated. The hinge line appears to be much shorter than the length of the prodissoconch, but is concealed by the curved, inflated umbones. The surface is granular and indistinct radiating ridges are indicated on the posterior slope. This type of prodissoconch resembles the figure given by Bernard (1898, Pl. 1, fig. 13) of Arca sp. He also describes the prodissoconch as yellow (p. 89) and furnished with "ponctuations."

The anterior mantle margin is furnished with one distinct black pigmented eye-spot on each mantle.

The largest specimen in the collection measures 94.8 mm in length, 58.7 mm in height, and 41.8 mm in diameter. It was obtained by shore collecting at Isla Angel de la Guarda in the Gulf of California (105340).

Occurrence: Usual habitat is under rocks in the intertidal zone. It is occasionally dredged down to 55 fms .
Distribution: Laguna Manuela, Bahía de Vizcaíno, west coast of Baja California, and the Gulf of California, to Zorritos, Peru. The Galapagos Islands. Keen (1937) gives its range north to 34° N. Ballast?

Subgenus CALLOARCA Gray 1857

Calloarca Gray, Ann. and Mag. Nat. Hist., ser. 2, vol. 19, 1857, p. 369. Type of subgenus: Byssoarca alternata Sowerby 1833 (by monotypy).

Barbatia (Calloarca) alternata (Sowerby) 1833

Byssoarca alternata Sowerby, Proc. Zool. Soc. London, 1833, p. 17. Fig.: Maury, 1922, Pl. 2, fig. 11 ; Reinhart, 1943, Pl. 11, figs. 5-7. Type loc.: Western Colombia; 12 fms ; attached to stones on rocky bottom.
Holotype: British Museum?
Remarks: Although this is an easily recognized species, very small specimens might be difficult to separate from very small specimens of Barbatia (Cucullacarca) reeveana. Barbatia alternata, however, can be distinguished by the broad, close-set ribs in the middle part of the shell. In small specimens in the material at hand, the prodissoconch is shiny white,
while in B. reeveana it is always bright yellow. The edentulous gap in the hinge seems to be more pronounced in juvenile specimens than in adults.
Occurrence: The species is reported from 4 to 15 fms on different kinds of bottom. However, it seems to live attached to rocks or other hard substances (shells, etc.).
Distribution: Punta Peñasco, Sonora, Gulf of California, Mexico, to Ecuador. Also found in the Pleistocene in Bahía de la Magdalena, Baja California (Hertlein and Strong, 1943).

Subgenus FUGLERIA Reinhart 1937

Fugleria Reinhart, Jour. of Paleontol., vol. 11, no. 3, 1937, p. 184. Type of subgenus: Barbatia (Fugleria) pseudoillota Reinhart 1937, Pliocene. (orig.)

Barbatia (Fugleria) illota (Sowerby) 1833

Pl. 11, figs. 6-8; text-figs. $83 \mathrm{a}-\mathrm{c}$
Byssoarca illota Sowerby, Proc. Zool. Soc. London, 1833, p. 18.
Syn.: Arca tabogensis C. B. Adams 1852.
Fig.: Reeve, Conch. Icon., vol. 2, Arca, species 78; Maury, 1922, Pl. 2 , fig. 8.
Type loc.: Golfo de Nicoya, Costa Rica; under stones.
Holotype: British Museum?
Remarks: Reinhart (1937) placed this species in the subgenus Fugleria. The posterior teeth, according to him, are totally absent in the type of the subgenus, but in Barbatia illota they are well developed (Pl. 11, figs. 6-8). As may be seen from the illustrations, both the posterior and the anterior teeth are distinctly striated. The teeth in the center of the hinge become granular and very irregular with increase of size; sometimes, especially in specimens of great length, they become quite obsolete for a long distance in the center of the hinge (Pl. 11, fig. 6).

The ligamental area is relatively narrow and the flattened anterior part is covered by a horny light brown periostracum. In young specimens the ligament consists of a few grooves (two in a specimen of 17 mm length) posterior to the umbones. In larger specimens, the grooves develop in both directions and become V-shaped, as in Cucullaearca (see Maury, 1922, p. 20), though not as pronounced as in this subgenus; the apex of the V lies just under the umbones. One specimen of 23 mm length has three V-shaped grooves, two of them reaching the hinge line before the umbo; another, measuring 35 mm in length, 24.3 mm in
height, and 21.3 mm in diameter, has seven grooves, three of them reaching before the umbo.

The periostracum consists of fine hairs connected with a foliaceous membrane. The hairs reach beyond the edge of the membrane, forming serrations. The mantle margins are unpigmented. The abdominal sense organs resemble those found by Heath (1941) in "Barbatia barbata." The byssus is well developed.

The H / L ratio varies between 50% and 75%, the D / L ratio between 43% and 57%. The largest specimen in this collection measures 38.1 mm in length, 19 mm in height, and 15.5 mm in diameter. It is from Puerto Utría, Colombia, shore (232-34).
Occurrence: B. (Fugleria) illota is usually taken in the intertidal zone attached to rocks. The species has also been dredged in 34 and 40 fms . Distribution: Isla Angel de la Guarda, Gulf of California, to Lobitos, Peru (the Peru locality reported by Olsson, 1924).

Genus ACAR Gray 1857

Acar Gray, Ann. and Mag. Nat. Hist., ser. 2, vol. 19, 1857, p. 369. Type of genus: Arca divaricata (Sowerby) 1833. (Subsequent designation by Stoliczka, 1871).
Remarks: As pointed out by Bartsch (1931), Acar is such a distinct unit of the subfamily Arcinae that it ought to be given generic rank. In the Acar-group, however, each species is not distinctly circumscribed, and the variability of the species makes it a very puzzling and interesting genus. The present material contains approximately 80 samples of A car, ranging from southern California to Peru and the Galapagos Islands.

One species group, known as Acar gradata (Broderip and Sowerby) 1829 , reaches a relatively large size and occurs in two forms, one coarsely sculptured (panamensis Bartsch 1931) and one finely sculptured (gradata Bartsch 1931). Reinhart (1939, Pl. 3, figs. 1a, 1b) shows that the holotype is the coarsely sculptured form, which makes panamensis Bartsch a synonym of gradata, leaving the finely sculptured form without a separate name. Reinhart (1939, 1943) considers it unnecessary to treat them as different varieties, as it sometimes may be difficult to decide whether a specimen belongs to the finely or coarsely sculptured form, and as the distribution of the two forms almost coincides. The two forms are not treated separately in the present paper.*

[^2]Another group of Acars, containing species which never reach the size of Acar gradata, at its northern limit is named Acar bailyi Bartsch 1931 (=pernoides Strong 1932, perhaps not Carpenter 1856b), with type locality Balboa, California; and at its southern limit is named Acar pusilla (Sowerby) 1833, with type locality Iquique, northern Chile. The range of A. baily i is given by Reinhart (1943) as from Topanga Beach (near Santa Monica), California, to Geronimo Island, Gulf of California (H. N. Lowe collection).

In the material at hand, specimens very close to Acar bailyi were found on the Mexican islands, Socorro, Clarión, Isabel, etc., and on the Islas Secas, Panama, as well as on the Galapagos Islands. As it has been impossible for me to find distinguishing characters, they are here treated under A. bailyi.

Garth (1946) discussed species of Brachyura which have a similar distribution: species which occur in Baja California and the Gulf of California and reach the Galapagos Islands via the Mexican islands, some of them also occurring in the Bahía de Panamá. He also discussed the causes of such a distribution.

One sample in the material from Ecuador seems to represent specimens of Acar pusilla (Sowerby), a little known species which is very close to A. bailyi.

Acar gradata (Broderip and Sowerby) 1829

Pl. 12, figs. 11-12
Arca gradata Broderip and Sowerby, Zool. Jour. London, vol. 4, 1829, pp. 365-366.
Syn.: Arca (Byssoarca) pholadiformis C. B. Adams 1852 (not A. pholadiformis Orbigny 1844).

Barbatia (Acar) reticulata Dall 1898, non Gmelin 1791. Acar panamensis Bartsch 1931.
Fig.: Maury, 1922, Pl. 2, figs. 4, 6, 9; Bartsch, 1931 ; Reinhart, 1939, Pl. 3, figs. 1a, 1b. (Holotype)
Anatomy: Heath, 1941.
Type loc.: Mazatlán, Mexico.
Holotype: British Museum. Zoological Dept. no. 58.5.12-100.
Remarks: As discussed under genus Acar, this species may be coarsely or finely sculptured. The finely sculptured form is in the minority in the present material. Some samples contain both fine and coarse specimens. Judging from the material at hand, the finely sculptured form is most common at the extremities of the range of the species, namely, in Baja California and Ecuador, whatever the cause may be.

The teeth are very distinctly transversely striated, often somewhat irregularly. Acar gradata has tiny black pigmented eye-spots along the whole mantle margin except for the foot-aperture part.

It has been discussed whether Acar gradata ought to be considered conspecific with the West Indian Acar domingensis (Lamarck) = reticulata Dall 1898, non Gmelin (see Reinhart, 1939, pp. 42-43). Heath (1941) found several distinguishing characters in the anatomy of the two species.
Occurrence: Intertidal on rocky shores. Occasionally taken down to 20 fms.
Distribution: Laguna de Scammon, west coast of Baja California, the Gulf of California, to Negritos, Peru (the Peru locality reported by Olsson, 1924). The Galapagos Islands.

Acar bailyi Bartsch 1931

Pl. 12, figs. 14, 15 a-e
Acar bailyi Bartsch, Proc. U. S. Natl. Mus., vol. 80, art. 9, 1931, p. 2. Syn.: Acar gradata auct. non Broderip and Sowerby 1829.

Arcopsis solida auct. non Sowerby 1833.
Acar pernoides Strong 1932 (perhaps not Carpenter 1856).
Fig.: Bartsch, 1931, Pl. 1, five middle figures; Reinhart, 1939, Pl. 3, figs. 3 a-d.
Anatomy: Heath, 1941 (Barbatia (Acar) pernoides).
Type loc.: Balboa, (near San Diego), California; under stones.
Holotype: U. S. National Museum no. 382474.
Remarks: There has been much discussion about the correct name for this species (see Strong, 1932, and Reinhart, 1943, pp. 35-36, 82). Carpenter (1856b) described Byssoarca pernoides from San Diego from a single valve with a length of about 17 mm , but the description is not sufficient to allow a recognition of the species and it has been impossible to locate the type, which is supposed to be in the Gould collection. Until the type specimen is examined, it is best not to use the name pernoides.

The figure of the holotype of Acar bailyi Bartsch shows a shell with slightly fainter radial sculpture on the middle of the disc, resembling the southern species Acar pusilla (Sowerby). This character seems to be typical for specimens from southern California.

Many samples from the Gulf of California down to Panama and the Galapagos Islands are here referred to Acar bailyi, but they are slightly larger and more even in sculpture. They have probably been recorded earlier as Arcopsis solida or Acar gradata from these more southern
localities. As specimens of Acar pusilla (Sowerby) from Ecuador to Chile, and these specimens from southern California are very like each other, it is possible that we have to do with a more widely distributed species which occurs in a larger form in the intermediate area, especially on the islands, and which therefore could be named Acar pusilla forma insularis. It is sometimes difficult to separate it from young specimens of Acar gradata. A. bailyi has distinctly striated teeth and the same arrangement of pigmented eye-spots as has A. gradata.

Heath (1941) has made an interesting survey of the anatomy of this species ("Barbatia (Acar) pernoides" from off Baja California). He shows that in several anatomical structures, this species is different not only from other species of the genus Acar (gradata and "reticulata"), but from all other Arcas he has studied.

The largest specimen of Acar bailyi in this material, from Isla de Clarión (140-34), measures 13.3 mm in length, 8 mm in height, and 7.8 mm in diameter. Many specimens have a very large diameter, often measuring more than the height.
Occurrence: Intertidal on rocky shores, and also in shallow water on coral reefs, where it seems to thrive very well. One sample with ten specimens is labelled 274-34, a station off Navidad Head, Mexico, which according to the station list is from 50 fms , with bottom of mud and sand. The record seems questionable, as all other samples with living specimens are either intertidal or from shallow water. Previously, it was believed to be a more northern species (see Strong, 1932, pp. 27-29; Reinhart, 1939, p. 42). Reinhart (1943, p. 35) gives its range from Topanga Beach, near Santa Monica, California, to Geronimo Island, Gulf of California.
Distribution: Santa Monica, California, to Panama; the Galapagos Islands.

Acar pusilla (Sowerby) 1833
Pl. 12, fig. 13
Byssoarca pusilla Sowerby, Proc. Zool. Soc. London, 1833, pp. 18-19. Syn.: ?Acar gradata (finely sculptured form) auct. non Broderip and Sowerby 1829.
Fig.: Reinhart, 1939, Pl. 3, figs. 2a, 2b. (Holotype)
Type loc.: Iquique, Chile; attached to stones at low water.
Holotype: British Museum. Zool. Dept. No. 58.5.12-100.
Remarks: One sample from Isla La Plata, Ecuador, containing seven specimens, represents this species. An illustration is given for comparison
with Reinhart's figure of the type. The species is easily recognized by the lacking or faintly developed radiating sculpture on the median part of the shell. It is small, the largest specimen at hand having a length of 8 mm , the type of about 11 mm . The teeth are striated as in Acar gradata. No specimen is preserved in alcohol. It can be seen from the dried-out animals, however, that Acar pusilla has a strong byssus and is furnished with the same arrangement of eye-spots as A. gradata.

Dall (1910) and others refer to Reeve, 1844, Pl. 16, fig. 112, as this species. This is wrong, as shown by Maury (1922, pp. 19-20). Acar pusilla is not figured in Conchologia Iconica, Reeve's species being similar to the finely sculptured form of A. gradata. Carpenter (1856a, p. 142), who apparently had seen the type of A. pusilla, indicates that the pusilla of Orbigny might be a dwarf variety of A. gradata. However, as Orbigny (1846, p. 633) reports A. pusilla from Peru, and from Arica and Cobija, Chile ($22^{\circ} 30^{\prime} \mathrm{S}$. lat.) , it is questionable if his records were A. gradata. Orbigny also refers to Reeve's species 112. Occurrence: Intertidal on rocky shores. The only sample in the present collection is from Isla La Plata, Ecuador.
Distribution: Dall (1910) gives its range from the "coast of Ecuador, and south to S. lat. $23^{\circ} 37^{\prime \prime}$ (Isla Blanca, Chile).

Genus ARCOPSIS von Koenen 1885

Arcopsis von Koenen, Abh. Gesell. der Wiss. Göttingen. Physik. Kl., Bd. 32, Tl. 2, 1885, p. 86.
Type of genus: Arca limopsis von Koenen 1885 (subsequent designation by Reinhart, 1935).
Remarks: Species belonging to Arcopsis have a rhomboidal, transversely striated ligament. The genus is related to the fossil genus Striarca Conrad 1862. MacNeil (1938) raises Striarca to subfamily rank and refers it to the family Noetiidae, which in turn he refers to the superfamily Glycymeracea. Genus Arcopsis is placed in the subfamily Striarcinae. This classification is not followed in the present paper. (Cfr. discussion by Reinhart, 1943, p. 5 and pp. 76-77.)

Arcopsis solida (Sowerby) 1833
Pl. 12, fig. 10 ; Pl. 13, fig. 16
Byssoarca solida Sowerby, Proc. Zool. Soc. London, 1833, p. 18.
Fig.: Maury, 1922, Pl. 2, figs. 7, 12.
Anatomy: Heath, 1941.

Type loc.: Payta, Peru; under stones.
Holotype: British Museum?
Remarks: Although the West Atlantic species, Arcopsis adamsi (Dall) 1886, is very similar to A. solida, Heath (1941) found that the two species differ in several anatomical details. Both species have one pigmented eye-spot on the anterior end of each mantle margin, just where the two margins join each other dorsally.

Arcopsis solida attains a length of 20 mm (Maury, 1922, p. 21). The other measurements of the same shell are: height, 14 mm ; diameter, 14 mm . The D / L ratio increases with increasing length.
Occurrence: This species is common in the intertidal zone among shingle, sand, and rocks. It is also often taken in depths down to 30 or 40 fms , on bottom of sand, shells, and rocks.

So far as is known, no living specimens have been taken in California, although Keen (1937) gives its range to 34° N. (See discussion in the Minutes of the Conchological Club of Southern California, no. 34, April, 1944, pp. 5-6). Arcopsis solida is commonly confounded in collections with species of the genus Acar, in spite of the fact that the character of the ligament distinguishes the two genera very easily and no confusion should be necessary.
Distribution: Bahía de Vizcaíno, west coast of Baja California, and Gulf of California, to Payta, Peru. The Galapagos Islands.

Subfamily Anadarinae Reinhart 1935
Genus ANADARA Gray 1847

Anadara Gray, Proc. Zool. Soc. London, 1847, p. 198.
Type of genus: Arca antiquata Linné 1758 (orig.).
Remarks: The species of genus Anadara from the region covered in the present paper are placed in four subgenera: Anadara s. s., Larkinia Reinhart 1935, Scapharca Gray 1847, and Cunearca Dall 1898, in the arrangement used by Reinhart (1943). Anadara s. s. contains equivalve species with an equal sculpture on both valves. Larkinia is distinguished by having teeth converging at the extremities of the hinge but diverging in the center; it is also described as equivalve, a character which cannot be used for separation, as one species included, Anadara (Larkinia) multicostata (Sowerby), is inequivalve. In Cunearca are found inequivalve species with strongly discrepant sculpture on the two valves. Scapharca is used for species which do not fit in any of the other subgenera, or species which fall in between Anadara s. s. and Cunearca.

Unfortunately, this unsatisfactory arrangement must also be followed in the present paper. To make a more natural and correct system, species from all regions of the world would have to be carefully studied. However, the present material may give some indication of relationships. The arrangement of the abdominal sense organs is shown by Heath (1941) to be a good character for generic classification. But of course many characters must be studied and used together for proper determination. As shown in text fig. 90c, Anadara obesa (Sowerby), which has always been placed in Scapharca because it has smooth ribs and is inequivalve, has the structure of the anal region like that of A. (Cunearca) nux (Sowerby) and A. (Cunearca) aequatorialis (Orbigny). The same situation as in the species mentioned was found by Heath (1941) in A. (Cunearca) chemnitzi (Philippi) (Pl. 15, fig. 11), a Caribbean species, and in A. (Cunearca) perlabiata (Grant and Gale) (Pl. 14, fig. 6), while A. (Cunearca) brasiliana (Lamarck) =incongrua (Say) (Pl. 17, fig. 3), the type of the subgenus Cunearca, is different not only in the aspect mentioned, but also in other anatomical structures (Heath, 1941, pp. 304-305). None of these species, as far as I know, have any pigmentation on the mantle margins.
A. (Scapharca) biangulata $\quad($ Sowerby $)=$ gordita $\quad($ Lowe $), A$. (Scapharca) cumingiana $($ Nyst $)=$ concinna (Sowerby), and the Caribbean A. (Scapharca) notabilis (Röding) $=$ auriculata auct. non Lamarck, seem to belong to the same group. Perhaps the subgeneric name Rasia Gray 1857 (type, Anadara formosa (Sowerby), designated by Stewart, 1930) ought to be used for these species. Anadara baughmani Hertlein 1951 is also believed to belong to Rasia. Among similar shell characters may be mentioned the wide flattened area anterior to the umbones which is not covered with ligament (text-fig. 86). The two species Anadara biangulata and Anadara notabilis (from Aruba), which are both found in the Hancock collections, have the same arrangement of eye-spots. The soft parts of Anadara cumingiana are not at hand, and Heath (1941) does not describe this character in his work. The abdominal sense organs of A. biangulata are like those found by Heath (1941) in two species of Anadara s. s. Heath also states that the three species of Scapharca studied by him, A. cumingiana, A. notabilis, and A. transversa, have the Anadara s. s. type of abdominal sense organs.

The subgenus Cara Gray (1857, p. 371, type Anadara aviculaeformis (Nyst), designated by Stewart, 1930) is used by Hertlein and Strong (1943) for Anadara emarginata (Sowerby). Reinhart (1935) placed Cara as a synonym of Scapharca. The subgenus should perhaps be
used but its limits seem uncertain. The abdominal sense organs in the two species mentioned above, both of which are represented in the Hancock material, are similar (text-figs. 88-89).

Subgenus ANADARA s.s.

Anadara (Anadara) tuberculosa (Sowerby) 1833
Pl. 13, figs. $17 \mathrm{a}-\mathrm{b}$
Arca tuberculosa Sowerby, Proc. Zool. Soc. London, 1833, p. 19.
Syn.: ?Arca similis C. B. Adams 1852.
Type loc.: Real Llejos, Nicaragua; mangrove roots.
Holotype: British Museum?
Remarks: Carpenter (1863, p. 364), who had examined the type of Arca similis Adams, which has never been figured, considered it doubtfully a variety of Anadara tuberculosa. Hertlein and Strong (1943) treat the two as different species and state that they are separable, at least in adult forms. They describe Anadara similis as being relatively lower, less angulated at the ends of the dorsal margin, and with the posterior umbonal area less angular than in Anadara tuberculosa. They illustrate A. similis on PI. 1, figs. 2 and 5.
Occurrence: Abundant in mangrove swamps in shallow water.
Distribution: Bahía de Ballenas, Baja California, to Tumbes, Peru (Hertlein and Strong, 1943). Olsson (1924) reports it as "very common along the entire coast" (of Peru).

Subgenus LARKINIA Reinhart 1935

Larkinia Reinhart, Bul. Brussels Mus. Roy. d'Hist. Nat., vol. 11, 1935, pp. 41-42.
Type of subgenus: Anadara larkinii (Nelson) (Olsson, 1932, Miocene, Peru) orig.

Anadara (Larkinia) grandis (Broderip and Sowerby) 1829
Arca grandis Broderip and Sowerby, Zool. Jour. London, vol. 4, 1829, p. 365.

Fig.: Maury, 1922, Pl. 3, fig. 13; Reinhart, 1943, Pl. 13, figs. 4-6. Type loc.: Panama Bay (designated by Hertlein and Strong, 1943). Holotype: British Museum?

Occurrence: Common at Panama and at Central American localities. Often taken at extreme low tide on sandbars (Hertlein and Strong, 1943). Reinhart (1943) reports it from the Pleistocene of Santa Elena Peninsula, Ecuador, and Hanna and Hertlein (1927) from the Pliocene of Carmen Island, Gulf of California. One specimen in the Hancock collection, dead when dredged, is labelled Ensenada, Mexico.
Distribution: Bahía de la Magdalena, Baja California, and Gulf of California, to Brazo Ramon, Peru ($5^{\circ} 47^{\prime}$ S, Frizzell, 1946).

Anadara (Larkinia) multicostata (Sowerby) 1833
 Text-figs. 84 a-d

Arca multicostata Sowerby, Proc. Zool. Soc. London, 1833, p. 21. Fig.: Reinhart, 1943, Pl. 8, figs. 9-11.
Type loc.: Golfo de Tehuantepec, Mexico; 12 fms .
Holotype: British Museum?
Remarks: Young specimens have a faint depression across the umbones; this seems to be a common condition in several species of Anadara (e. g., A. cumingiana, A. biangulata, A. reinharti). The ribs are furnished with minute pits, three to five in a row across the ribs. Between the rows of pits are faint ridges, which also extend to the interspaces. Every pit has a tiny periostracum flap, while the interspaces have only one larger flap on the same level. On the oldest part of the shell the ribs on the left valve are broader than those on the right. Living specimens have a bright orange-colored flesh (information by Mr. John E. Fitch).
Occurrence: Taken down to 70 fms on various kinds of bottom: rock, sand, coralline, etc. Lives apparently free upon the substratum. All material at hand is either from the Gulf of California or the Galapagos Islands. According to Reinhart (1943, p. 66), its occurrence in the Pliocene of southern California (reported by Arnold, 1907, p. 544, and Eldridge and Arnold, 1907, p. j2), is doubtful.
Distribution: Newport Bay, California, to Panama. The Galapagos Islands. (Hertlein and Strong, 1943.)

Subgenus SCAPHARCA Gray 1847

Scapharca Gray, Proc. Zool. Soc. London, 1847, p. 198.
Type of subgenus: Arca inaequivalvis Bruguière 1789 (orig.).

Fig. 84. Anadara (Larkinia) multicostata (Sowerby) 1833. South of Isla Tiburón, Gulf af California. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 62.8 mm . d. Bahía San Francisquito, Gulf of California. Dorsal view showing arrangement of ligament of young specimen. Length, 13.8 mm .

Fig. 85. Anadara (Scapharca) reinharti (Lowe) 1935. Puerto Escondido, Gulf of California. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 23 mm . d. Off Isla de la Nuez, Isla del Coco, Costa Rica. Dorsal view showing arrangement of ligament. Length, 40.4 mm .

Anadara (Scapharca) reinharti (Lowe) 1935
Pl. 13, figs. 18 a-c, 19 a-b; Pl. 14, figs. 20 a-c; text-figs. 85 a-d
Arca (Anadara) reinharti Lowe, Trans. San Diego Soc. Nat. Hist., vol. 8, no. 6, pp. 16-17, Pl. 1, figs. 3 a-c.
Type loc.: Guaymas, Sonora, Mexico; 20 fms .

Holotype: San Diego Natural History Museum. Type coll. cat. no. 11389.

Remarks: Although this species was rather recently described, it seems to be common. Previously it has supposedly been confused with Anadara (Larkinia) multicostata (Sowerby). The subgeneric placement of Anadara reinharti is questionable. Small specimens are more like Cunearca, while very large ones are close to the Larkinia group. Reinhart (1943) referred it to Scapharca, a placement followed here, though it is not satisfactory. The specimens here referred to A. reinharti are rather variable, a circumstance not common in the genus Anadara, although some variation in this species has previously been pointed out (Hertlein and Strong, 1943, p. 157). Possibly the group should be divided into several species, but more knowledge of it will be necessary before this can be done. Only small specimens were hitherto reported under the name A. reinharti; thus we find that the type, which was about the largest specimen reported, has a length of only 27.7 mm . However, the present material includes samples with much larger specimens (about 40 mm), one sample (773-38) containing 32 large specimens, the largest of which measures 45.5 mm in length, 40.4 mm in height, and 37.7 mm in diameter. The whole sample is preserved in alcohol. One very large specimen (Pl. 13, fig. 19), referred somewhat doubtfully to A. reinharti, measures 75 mm in length, 58.5 mm in height, and 59.5 mm in diameter; and has 31 ribs. The usual number of ribs in this species varies between 26 and 29. The ribs on the left valve are nodulose on the anterior and middle part on young shells and also on the anterior part of the right valve. On older shells, the ribs become grooved, especially on the left valve. Two to four grooves on the ribs may be observed. The ribs on the left valve are broader than those on the right and the interspaces are furnished with thin transverse ridges. In some specimens the ribs may be smoother, and the breadth is also variable. They are furnished with small pits as in A. multicostata. In small specimens a faint groove or depression may be seen on the umbones. This groove is sometimes colored with reddish-brown, and appears as a colored line across the umbones. Other parts of the shell are sometimes stained with reddish-brown also.

A concavity on the posterodorsal margin distinguishes it from Anadara (Larkinia) multicostata, and there is a slight convexity on the posterior part of the ventral margin. Young A. reinharti is also more elongate than A. multicostata and has a larger number of chevron-shaped grooves on the ligament than has the latter species. A specimen of A.
reinharti with a length of 21 mm has three grooves, and a specimen 43.5 mm long has six; while a specimen of A. multicostata with a length of 75 mm has three grooves, and a specimen with a length of 53 mm has only one groove. The large specimen which, as previously mentioned, was with doubt referred to A. reinharti, has six grooves on the ligament. It may be seen that the number of ribs cannot be used to distinguish the two species with certainty, since this number slightly overlaps. The character may, however, be used as an aid to identification.

As pointed out by Lowe (1935, p. 16), Anadara reinharti is more inflated than Anadara multicostata. The D / L ratio of A. reinharti in the present material varies between 66% and 87%. The same ratio in the holotype is 88.5%; for its size, the type is exceptionally inflated. Small specimens have the lowest D/L ratio. One tiny eye-spot may be observed on the anterior end of each mantle margin in some specimens; it is not easily observed and does not seem to be a constant character. The foot is furnished with a threadlike byssus which was intact in many of the specimens examined. In some small specimens (5 to 10 mm), pebbles were attached to the byssus.
Occurrence: This species was taken from 1 to 50 fms , on various kinds of bottom, sand, shells, rock, mud, etc. Previously (Hertlein and Strong, 1943), it was known from the Gulf of California to Panama. Two samples in this collection are from Ecuador.
Distribution: Punta Peñasco, Sonora, Gulf of California, to Bahía de Santa Elena, Ecuador.

Anadara (Scapharca) cumingiana (Nyst) 1848
Arca cumingiana Nyst, Mém. Acad. Roy. Sci. Belgique, vol. 22, p. 22, new name for Arca concinna Sowerby 1833, P. Z. S. L., p. 20 (not Cucullaea concinna Phillips 1829).
Fig.: Maury, 1922, Pl. 1, fig. 10.
Anatomy: Heath, 1941.
Type loc.: Golfo de Nicoya, Costa Rica; 12 fms; coarse sand.
Holotype: British Museum?
Remarks: Unfortunately the specific name cumingiana has to replace concinna (Sowerby), according to the International Rules of Zoological Nomenclature (see Reinhart, 1943, p. 73, footnote).

A good description of this species is given by Maury (1922, p. 25). The ligamental area is similar to that of Anadara biangulata (Sowerby) $=$ gordita (Lowe), a species to which it seems to be related. The chevron-shaped ligament grooves are few (one to three) in relation to
age, and in a specimen 29.8 mm long, one groove reached before the umbo. Sometimes the shell is stained with light reddish-brown, especially on the umbones. The periostracum is bristly in the interspaces between the anterior and posterior ribs, but shell-like in the median part. The posterior and anterior rows of teeth overlap. Maury (1922) reports a specimen with a length of 35 mm , which seems to be the maximum recorded length of this species. Anadara cumingiana should possibly be referred to the subgenus Rasia Gray.
Occurrence: A. cumingiana is taken from 5 to 50 fms , although it commonly occurs deeper than 20 fms . Sand, mud, or sandy mud are the common components of the bottom in which it lives. The Allan Hancock material extends the distribution south to Isla Salango, Ecuador.
Distribution: Bahía de San Luis Gonzaga, west coast of Gulf of California ($29^{\circ} 50^{\prime} \mathrm{N}$), to Isla Salango, Ecuador.

Anadara (Scapharca) biangulata (Sowerby) 1833
Text-figs. 86, 87 a-c
Arca biangulata Sowerby, Proc. Zool. Soc. London, 1833, p. 21. Syn.: ?Arca gordita Lowe 1935.
Fig.: Lowe, 1935, Pl. 1, fig. 1; Reinhart, 1943, Pl. 12, figs. 10-11. Type loc.: Atacames, Ecuador; 7 fms .
Holotype: British Museum?
Remarks: It is very probable that Anadara biangulata and Arca gordita represent the same species; they were so considered by Hertlein and Strong (1943). Sowerby's description is short and an illustration of the type was not given. Sowerby, who had a single specimen, described it among the equivalves. A complete specimen in this collection, which measures 25.6 mm , is very distinctly inequivalve, with the left valve overlapping the right ventrally. Reinhart (1943) placed Anadara gordita in Anadara s. s. because of the similar sculpture on both valves.

Two V-shaped ligamental grooves are present behind the umbones in a specimen 25.6 mm long, as shown in text-fig. 86. The stippled area is covered with ligament, and the elastic bands across the V-shaped areas are indicated. The rows of teeth overlap as in Anadara concinna. The sculpture in the interspaces between the ribs is also similar in the two species. The figure by Reinhart (1943) gives a very good picture of the sculpture. Small specimens are more elongate in shape than larger ones.

This species should probably be referred to subgenus Rasia Gray. Occurrence: Hertlein and Strong (1943) report it from 12 to 61 fms . Muddy bottom is most common, also sand, crushed shells, etc. The only

86

Fig. 86. Anadara (Scapharca) biangulata (Sowerby) 1833. Isla Isabel, Gulf of California. Dorsal view showing the arrangement of the ligament. Length, 25.6 mm .
specimen dredged alive in this collection is from Isla Isabel, Mexico, 10 to 15 fms .
Distribution: San Felipe, east coast of Baja California (Gulf of California), to Payta, Peru. The Galapagos Islands. (The two latter localities are taken from Hertlein and Strong, 1943.)

Anadara (Scapharca) aviculaeformis (Nyst) 1848

Pl. 14, figs. $21 \mathrm{a}-\mathrm{c}, 23$; text-figs. $88 \mathrm{a}-\mathrm{c}$
Arca aviculaeformis Nyst, Mém. Acad. Roy. Sci. Belgique, vol. 22, 1848, p. 12.
Syn.: Arca auriculata Sowerby 1833 (not Lamarck 1819).
Arca aviculoides Reeve 1844 (not de Koninck 1842).
Type loc.: Santa Elena, Ecuador; 10 fms ; mud.
Holotype: British Museum?
Remarks: There seem to be few records of this species. Apparently Anadara biangulata (Sowerby) has often been given this name. Cuming collected the type described by Sowerby, which measured 30 mm . C. B. Adams (1852) gives a record of one specimen of Arca aviculoides from Panama, but says the specimen was too young to be determined with confidence. Dall (1909) gives its range as from Panama to Guayaquil. Maury (1922) reports one specimen from Panama (Newcomb collection), with a length of 23 mm . Two specimens are present in the Allan

Hancock collections. The larger one, from Isla Isabel, Mexico, measures 54.5 mm in length, 31.7 mm in height, and 27.4 mm in diameter. It fits Reeve's description very closely and must represent this species, despite its much larger size and more northerly locality. The other specimen, from Islas Secas, Panama, measures 34.6 mm in length, 21.2 mm in height, and 18.3 mm in diameter, and agrees completely with the larger example. One specimen in the San Diego Museum of Natural History (cat. no. 28182) is labelled "Carmen Island, Gulf of California, 20 fms." Its length is 27 mm and it agrees completely with the specimens at hand. The shells possess 37 to 39 ribs. The periostracum is dark brown and bristly in the interspaces between the ribs. Posteriorly the bristles become very long but are still soft. On the ribs the periostracum forms membranous lamellae which are of a lighter color. The ligament has two chevron-shaped grooves. Between one third and one fourth of the ligament is situated anterior to the umbones. A black ray on the umbones as described by Maury (1922) cannot be observed. This species was designated by Stewart (1930) as the type of the subgenus Cara Gray.
Occurrence: Rare. Taken between 10 and 20 fms , on various kinds of bottom, sand, mud, rock, coralline, etc.
Distribution: Isla del Carmen, west coast of the Gulf of California (San Diego Museum), to Santa Elena, Ecuador.

Anadara (Scapharca) emarginata (Sowerby) 1833

Pl. 14, fig. 22 ; text-figs. 89 a-c
Arca emarginata Sowerby, Proc. Zool. Soc. London, 1833, p. 20.
Fig.: Reeve, 1844, Pl. 4, fig. 26; Maury, 1922, Pl. 2, figs. 5, 10.
Type loc.: Atacames, Ecuador (designated by Hertlein and Strong, 1943).

Holotype: British Museum?
Remarks: The material at hand contains only small specimens less than 18 mm in length. The umbones are decorated with a blue, bluish-green, or black radiating ray, and the rest of the shell has black blotches. Sometimes black lines radiating from the umbo are present in the interior of the shell (cfr. Carpenter, 1856a, p. 137). The ribs are about 30 in number. The five or six most anterior and three or four most posterior ribs are often crossed by transverse ridges. The posterior auriculation is variably pronounced. The byssus is well developed and intact in some of the specimens. The mantle margin is pigmented with a dark brown

Fig. 87. Anadara (Scapharca) biangulata (Sowerby) 1833. Isla Isabel, Gulf of California. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 25.6 mm .

Fig. 88. A. (Scapharca) aviculaeformis (Nyst) 1848. Isla Isabel, Gulf of California. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 54.5 mm .
Fig. 89. A. (Scapharca) emarginata (Sowerby) 1833. Canal de Marcy, Bahía de la Magdalena, Baja California. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 14.8 mm .
irregular band on the side that touches the shell. No eye-spots can be distinguished with certainty. Maury (1922) reports a specimen with a length of 48 mm . This species should perhaps be referred to the subgenus Cara Gray.
Occurrence: This species is recorded from 3 to 13 fms . It is dredged from sand, sandy mud, and rocky bottom. Carpenter (1856a) reports young specimens on Spondylus and adults on Murex. It is known to occur from the Gulf of California to Atacames, Ecuador. Hertlein and Strong (1943) say it occurs in the Pleistocene in Magdalena Bay, Lower California. Four living specimens from Bahía de la Magdalena are present in this material.
Distribution: Bahía de la Magdalena, Baja California, and Gulf of California, to Payta, Peru (reported by Olsson, 1924).

Anadara (Scapharea) obesa (Sowerby) 1833

Pl. 16, figs. 28 a-b; text-figs. 90 a-c
Arca obesa Sowerby, Proc. Zool. Soc. London, 1833, p. 21.
Type loc.: Atacames, Ecuador; 7 fms.
Holotype: British Museum?
Remarks: This species can scarcely be confused with other west American Anadaras because of its great number of ribs (39 to 44). It attains a length of 40 mm (Maury, 1922). As shown on text-fig. 90 c , the abdominal sense organs of this species are of the same type as those of Anadara (Cunearca) nux (Sowerby) and Anadara (Cunearca) aequatorialis (Orbigny).
Occurrence: Not common. Taken in fine sand or mud from 12 to 61 fms.
Distribution: Off San Jose del Cabo, south coast of Baja California, to Negritos, Peru (Hertlein and Strong, 1943).

Subgenus CUNEARCA Dall 1898

Cunearca Dall, Trans. Wagner Free Inst. Sci., vol. 3, part 4, 1898, p. 618.

Type of subgenus: Arca incongrua Say 1822 (orig.).
Anadara (Cunearca) nux (Sowerby) 1833
Pl. 16, figs. 29 a-c ; text-figs. 91 a-c
Arca nux Sowerby, Proc. Zool. Soc. London, 1833, p. 19.
Type loc.: Jipijapa, Ecuador; 12 fms ; sandy mud.
Holotype: British Museum?

Remarks: One V-shaped groove circumscribes the ligamental area. On larger specimens a second groove may be developed, though it does not become definitely V-shaped. The ligamental area is crossed by elastic bands which are usually worn off in the middle part. If a second groove is developed, a secondary layer of elastic bands will also be present. In small specimens, the ligament is posterior to the umbones only. The anterior groove grows rapidly, however, and finally the umbones are only slightly anterior to the center of the ligamental area. The periostracum is bristly in the interspaces, the bristles becoming long and thin on the posterior slope. The mantle margin is unpigmented. The abdominal sense organs are similar to those of Anadara (Cunearca) chemnitzi and Anadara (Cunearca) perlabiata (Heath, 1941, P1. 15, fig. 11; Pl. 14, fig. 6), with a trilobate flap above the anal opening. A papilla in the opening is sometimes visible.

Anadara (Cunearca) nux may attain a length of 25 mm (Maury, 1922).

Occurrence: Dredged from 2 to 40 fms . The larger part of the material at hand taken between 10 and 20 fms . Lives in bottom of fine sand or mud.
Distribution: Bahía Concepción, east coast of Baja California (Hertlein and Strong, 1943) to Negritos, Peru (Olsson, 1924).

Anadara (Cunearca) aequatorialis (Orbigny) 1846

$$
\text { Pl. 15, figs. } 27 \text { a-c ; text-figs. } 92 \text { a-c }
$$

Arca aequatorialis Orbigny, Voyage dans l'Amérique Méridionale, vol. 5, pt. 3, p. 636; new name for Arca ovata Reeve 1844, not Arca ovata Gmelin in Linné 1791; not Arca ovata Buckman in Murchison 1844.

Syn.: Arca subelongata Nyst 1848, new name for Arca ovata Reeve.
Type loc.: Santa Elena, Ecuador; 6 to 8 fms ; sandy mud.
Holotype: British Museum?
Occurrence: In fine sand or mud, from 7 to 40 fms .
Distribution: Mazatlán, Mexico, to Zorritos, Peru. The Galapagos Islands. (Hertlein and Strong, 1943).

Fig. 90. Anadara (Scapharca) obesa (Sowerby) 1833. Off San José, Guatemala. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 25.7 mm .
Fig. 91. A. (Cunearca) nux (Sowerby) 1833. Off San José, Guatemala. a. Lateral view, b. Dorsal view. c. Abdominal sense organs. Length, 15.5 mm .
Fig. 92. A. (Cunearca) aequatorialis (Orbigny) 1846. Off San José Guatemala. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 14 mm .

92 c

c

Genus LUNARCA Gray 1842

Lunarca Gray, Synopsis of the Contents of the British Museum, ed. 44, 1842, p. 81.
Syn.: Argina Gray 1840 (nomen nudum).
Argina Gray 1842 (non Hübner 1822).
Arginarca McLean 1951 (new name for Argina Gray).
Type of genus: Lunarca costata Gray 1842 (by monotypy) $=$ ovalis (Bruguière) 1892 = campechiensis (Gmelin) $1791=$ pexata (Say) $1822=$ americana (Wood) 1828, etc.
Remarks: The anterior teeth are irregular and have a tendency to grow together in larger specimens, and a groove may be formed in the opposite valve for the reception of these confluent teeth. Gray's specimen, upon which Lunarca was based, is probably an extreme case in which the anterior teeth had grown together as one. There can scarcely be any doubt that Lunarca costata, known from only one specimen, is the same as Lunarca ovalis (Bruguière) (see figures given by H. and A. Adams (1857), Pl. 125, figs. 7, 7a, L. pexata (Say) ; L. costata Gray, figs. 8, 8a)

Four species belonging to this group are described from the west coast of America. They are: Lunarca brevifrons (Sowerby) 1833, Lunarca vespertina (Mörch) 1861, Lunarca brevifrons bucaruana (Sheldon and Maury) in Maury, 1922 (described as a variety of L. brevifrons), and Lunarca melanoderma (Pilsbry and Lowe) 1932. However, none of these species seem to be clearly circumscribed; the number of ribs has mainly been used to identify them. Lunarca brevifrons seems to have been reported only two times; from Tumbes, Peru, where the type specimen was found, and from Mazatlán, Mexico, from which locality Carpenter (1856a) reported it in the Reigen Catalogue, with a question as to its identity. Maury (1922) and Hertlein and Strong (1943) say that L. brevifrons is distinguished by having only 22 or 23 ribs, while the other species of the group have more than 30 . Sowerby (1833) gives no number of ribs in the description of the type; but Reeve (1843) gives the number as 22 or 23 in his description of L. brevifrons. However, as his figure of this species seems to have far more than 22 or 23 ribs, his recording may perhaps be an error for 32 or 33. An examination of the type material is necessary to settle this question.

The status of the three other species is also questionable. Hertlein and Strong (1943) suggested that L. melanoderma might be the same as L. brevifrons bucaruana. L. vespertina (Mörch) is described from
one single broken valve 7.75 mm in length, from Realejo, Nicaragua. Three samples of small specimens from Baja California and the Gulf of California are here referred to L. vespertina (Mörch), as his description fits them very closely. One sample from Panama and two from the Galapagos Islands are referred to Lunarca sp.

It is quite possible that all Lunarca from the west coast is one variable species similar to Lunarca ovalis from the east coast. A large amount of material from many localities is needed before further conclusions can be drawn.

Lunarca vespertina (Mörch) 1861

Pl. 15, figs. 24 a-b; text-figs. $93 \mathrm{a}-\mathrm{c}$
Arca (Argina) vespertina Mörch, Malakozool. Blätter, vol. 7, 1861, p. 204.

Fig.: Hertlein and Strong, 1943, Pl. 1, figs. 6-7.
Type loc.: Realejo, Nicaragua.
Holotype: ?
Remarks: The west American species belonging to this genus are discussed in the previous section under the genus Lunarca.

Four specimens are here referred to Lunarca vespertina. They are all small and fit Mörch's description very closely. The only figure of this species in existence is given by Hertlein and Strong (1943, Pl. 1, figs. 6-7) and the rather large specimen figured, 36.1 mm in length, does not strongly resemble the shells referred to the same species in the material at hand. The authors state, however, that larger specimens become more elongate, while the younger ones are more quadrate in shape.

Fig. 93. Lunarca vespertina (Mörch) 1861. Off Punta Pequeña, Baja California. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 17.5 mm .

The number of ribs varies between 36 and 38 , and the ribs of the left valve are broader than those on the right. The umbones are stained with bluish-black. The mantle margin has a heavily pigmented narrow band on the side that touches the shell, but no distinct eye-spots can be observed. The byssus was found intact in two of the specimens and consists of thin threads. Heath (1941, p. 305) did not find any sign of a byssus in Lunarca ovalis (Bruguière)=pexata (Say), the Atlantic coast species. The abdominal sense organs of L. vespertina resemble those of this species. The labial palps are comparatively smaller in L. ovalis. It may be noted, however, that the specimens examined by Heath had a length of 52 mm . The largest specimen of L. vespertina in the present material measures 17.2 mm in length, 12.8 mm in height, and 9.6 mm in diameter. It is from off Punta Pequeña, Baja California (617-37).
Occurrence: One of the samples was collected in shallow water, while the other two were both dredged from 24 fms , in sand and sandy mud respectively. Hertlein and Strong (1943) report it from 7 to 13 fms with sand, mangrove leaves.
Distribution: Off Punta Pequeña, west coast of Baja California, Isla Espiritu Santo, Gulf of California (the present material), Mazatlán, Mexico, Corinto, Nicaragua (Hertlein and Strong, 1943). Dall and Ochsner (1928) report it with a question mark as fossil from the Galapagos Islands. This identification, however, is in error (Reinhart, 1943).

Lunarca sp.

Pl. 15, figs. 25 a-b, 26
Remarks: As mentioned before, three samples are here referred to Lunarca sp. One from the Galapagos Islands consists of a worn right valve which measures 45.7 mm in length, 35.6 mm in height, and 14.8 mm in semidiameter, and possesses 35 ribs. The other Galapagos valve (left) measures 43.6 mm in length, 33.2 mm in height, and 15 mm in semidiameter; and has 36 ribs. Another sample is from Panama and consists of a complete specimen which measures 52 mm in length, 41.3 mm in height, and 35.5 mm in diameter. The specimen is thick, with swollen umbones, and has 36 ribs. The left valve overlaps the right except anterodorsally and posterodorsally.

Subfamily Noetiinae Stewart 1930

Remarks: Stewart (1930) placed this subfamily in the family Glycymeridae. MacNeil (1938) raised it to family rank under the superfamily Glycymeracea. To Noetiidae he referred the subfamilies Stri-
arcinae, Trinacriinae, and Noetiinae. This arrangement is not used in the present paper (see discussion by Reinhart, 1943, pp. 5 and 76). Frizzell (1946) also gave the subfamily family rank, but retained it in the superfamily Arcacea.

Genus NOETIA Gray 1857

Noetia Gray, Ann. and Mag. Nat. Hist., ser. 2, vol. 19, 1857, p. 371. Type of genus: Noetia triangularis Gray 1857 (by monotypy) $=$ reversa (Sowerby), fide Reinhart, 1935.

Subgenus NOETIA s. s.

Noetia (Noetia) reversa (Sowerby) 1833
Text-figs. $94 \mathrm{a}-\mathrm{c}$
Arca reversa Sowerby, Proc. Zool. Soc. London, 1833, p. 20.
Syn.: Noetia triangularis Gray 1857.
Fig.: Reinhart, 1943, Pl. 14, figs. 5, 7, 8.
Type loc.: Tumbes, Peru; 7 fms ; soft mud.
Holotype: British Museum?
Remarks: The general external appearance of the anatomy of this species resembles that of Noetia ponderosa (Say), which has been studied by Heath (1941; general appearance, Pl. 18, fig. 1). In Noetia reversa, the labial palps are relatively larger. Besides having two large anal papillae placed as in N. ponderosa (Heath, 1941, Pl. 19, fig. 2), N. reversa has a papilla or flap (not always visible) in the opening of the anus. The mantle margin is unpigmented. The teeth are striated on both sides but the top is smooth.
Occurrence: Noetia reversa was dredged by the Velero III and Velero $I V$ in depths down to 24 fms , on sandy or muddy bottom. Hertlein and Strong (1943) report it down to 40 fms. Reinhart (1943) gives its habitat as intertidal.
Distribution: Off Bahía Concepción, Gulf of California, to Peru.

Genus SHELDONELLA Maury 1917

Sheldonella Maury, Bul. Amer. Paleontology, vol. 5, no. 29, 1917, p. 166.

Type of genus: Noetia (Sheldonella) maoica Maury (by monotypy); Miocene, Dominican Republic.

Fig. 94. Noetia reversa (Sowerby) 1833. Off Acapulco, Mexico. a. Lateral view. b. Dorsal view. c. Abdominal sense organs. Length, 17.5 mm .

95
Fig. 95. Sheldonella delgada (Lowe) 1935. South of islands off Navidad Head, Bahía Tenacatita, Mexico. Dorsal view showing the arrangement of the ligament. Length, 14.8 mm .

Sheldonella delgada (Lowe) 1935

Text-fig. 95
Arca delgada Lowe, Trans. San Diego Soc. Nat. Hist., vol. 8, no. 6, p. 16, Pl. 1, fig. 2.
Fig.: Reinhart, 1943, Pl. 12, figs. 4-5.
Type loc.: Manzanillo, Mexico; 20 fms .
Holotype: San Diego Museum of Natural History. Type coll. cat. no. 11388.

Remarks: The arrangement of the ligamental area is shown in a sketch, text-figure 95. The specimen figured has a length of 14.8 mm . The posterior groove on the ligament which, according to MacNeil (1937, p. 7), has not been observed in Sheldonella, is distinct, though less
prominent than the three anterior ones, and does not reach quite across the area covered with ligament. Another specimen, with a length of 15.7 mm , has four anterior grooves, but a distinct posterior groove is lacking. One valve is stained with reddish-brown posteriorly and the interior of the umbonal cavity is also reddish-brown. One of the specimens was alive when dredged, but unfortunately it was not preserved in alcohol and the animal was dried up and badly cracked. Though soaking in trisodiumphosphate was tried, a restoration of the animal was impossible. In this specimen a relatively deep byssal cavity seems to be present. The labial palps are short and broad. The gills are elongate and apparently placed more horizontally than in Noetia (Noetia) reversa and Noetia (Eontia) ponderosa, as one would expect from the form of the shell.
Occurrence: This species was previously reported only from the type locality, Manzanillo, Mexico, where it was collected at 20 fms by Lowe in 1930. Hertlein and Strong (1943) report it also from Manzanillo, at 30 fms in gravelly sand. By the Allan Hancock Foundation, it has been dredged at four stations from Bahía de San Ignacio, Sinaloa, Mexico, to Bahía Honda, Panama. In the California Academy of Sciences, there are specimens from Chamela Bay, Mexico, 15 to 40 fms , and from near Santa Isabel Island, Gulf of California (T. Crocker Expedition, 1932). Distribution: Bahía de San Ignacio, Sinaloa, Mexico, to Bahía Honda, Panama.

LIST OF MATERIAL OF THE FAMILY ARCIDAE PRESERVED IN THE ALLAN HANCOCK FOUNDATION COLLECTIONS

The list of stations under each species is arranged as correctly as possible from north to south, after the records at hand. Place names are given as listed in the Millionth Map of Hispanic America, American Geographical Society. Alternative names for stations occupied by the Velero III from 1931 to 1942 will be found in the Allan Hancock Pacific Expeditions, Volume 1, number 3. The numbers marked BS are mud sample stations taken separately, and alternative names for these will be found in the Allan Hancock Pacific Expeditions, volume 6. Other numbers represent stations at which collections were made by members of the Allan Hancock Foundation staff, or by others.

The stations lying within a line from Cabo San Lucas, Baja California, and Cabo Corrientes, Jalisco, Mexico, are recorded as from the Gulf of California.
Specimens
one and one valve
(dead). Ballast?
three and three
\quad valves
many
one
two
one valve
fourteen
one valve
one valve
one
one
two
two
one and one valve
one
one
eleven
one
three
one
many large
one and one valve
one
one
one valve
one valve
the
Remarks

Shell
Shell, sand
Sand, coralline
Nullipores
Sand. Beam trawl

Shell, mud
Nullipores
Sand, rock
Dipnetting
Sand, sponge, coral
Sand, seaweed
Mud, shell
Shell
Sand
Sand, rock
Rock, sand, mud
Rock, mud, coralline
Mud, rock
Sand
Rock, gorgonids

Station Location

Arca (Arca) pacifica (Sowerby)

California
3/4 mi SE of Cat Rock, Anacapa Island

Mexico: Gulf of California

1051-40 Puerto Refugio, Isla Angel de la Guarda
1048-40 Puerto Refugio, Isla Angel de la Guarda $\begin{array}{ll}\text { 1056-40 } & \text { Puerto Refugio, Isla Angel de la Guarda } \\ 555-36 & \text { Between Isla Partida and Isla Angel de la }\end{array}$ Guarda
Gueen Isla Partida and Isla Angel de la Guarda
Isla Raza

S of Isla Tiburón
Isla de San Esteban
Ensenada de San Francisco, Sonora Bahía de Guaymas, near Cabo Haro,

Bahía del Coyote, Bahía Concepción
Puerto Escondido, S of Loreto
Puerto Escondido, S of Loreto
Puerto Escondido, S of Loreto
Puerto Escondido, S of Loreto Puerto Escondido, S of Loreto
Bahía de San Ignacio

Bahía de San Ignacio
Canal de San Lorenzo
BS 275
$1044-40$
0
í
in
+
in
مㅇ
O
$1093-40$
$594-36$
0
N
N
N
느N

> Off Isla Medidor, Bahia Honda Bahía Honda Bahía Honda
Off Cabo de San Francisco
Isla Salango

Arca (Arca) mutabilis (Sowerby)
of California . Angel de la Guarda Vicinity of Puerto San Carlos, Sonora Bahía Catalina, near Cabo Haro, Sonora
Bahía de Agua Verde
t우문․․․․․․․․
Isla Isabel
jaqesi elsi
Isla María Magdalena, Las Tres Marías
Lagoon behind NE Point, Isla María
Cleofas, Las Tres Marías

> Bahia Braithwaite, Isla Socorro Rocas de San Lorenzo, Acapulco, Guerrero
Bahía Playa Blanca
Puerto Parker, opposite Punta Abajo
Boca de Culebra
S of Punta Mala
O
0
0
0
0
0
0
0
0
0
Isla Taboga
Islas Secas

Off Isla Jicarita
.
Mexico: Gul

Costa Ric

Remarks
Rock
Reef inside outer island
Rock
Coral
Rock
Rock

Galapagos Islands
$11-32 \quad \mathrm{Ba}$

Galapagos Isla	
11-32	Bahía de Conway, Isla Santa Cruz (Indefatigable Island)
Barbatia (Barbatia) lurida (Sowerby)	
Mexico: Gulf of California	
1737-49 Bahía San Gabriél, Isla Espíritu Santo	
Mexico	
259-3	El Bufadero
Galapagos Islands	
187-3	Bahía de Cartago, Isla Isabela (Albemarle Island)
Barbatia (Cucullaearca) reeveana (Orbigny)	
Mexico: Baja California, Pacific coast	
2022-5	10 mi W of Punta Malarrimo
2024-5	9.5 mi W of Punta Malarrimo
617-37	Off Punta Pequeña
Mexico: Gulf of California	
1049-40	Puerto Refugio, Isla Angel de la Guarda
1053-40	Puerto Refugio, Isla Angel de la Guarda
533-36	Bahía San Francisquito
1769-49	Punta Aguja, near Punta Concepción
1772-49	Isla Bargo, Bahía Concepción
591-36	Puerto Escondido, S of Loreto
742-37	Bahía de San Ignacio, Sinaloa
518-36	N side, Isla San Francisco

one valve
two
two
one
six
nine and one valve
three
six
two
two
one
 O

Coarse sand
Rock
Rock
Coral
Coral
Reef inside outer island
Coral
Coral
Coral
Rock
Coral
Rock, nullipores
Rava rock
Rock
Rock, tide pools
Rock, sand
Rock
Rocky ledges
Rock
Rock
Rough rock
Rock
Ron
Ron
荡

Depth	Remarks Shore Shore West shore 5 fms Shallow water			
Rock	Rock，sand Rock，sand Sand with rock patches Coral			
North shore		\quad	North shore	Rock
:---	:---	\quad	Rock，sand	
:---				

Mnnommm

Isla Seymour（North Seymour Island）
Isla Baltra（South Seymour Island）
Isla Baltra（South Seymour Island）
Off Isla Baltra（South Seymour Island）
Off Isla Baltra（South Seymour Island）
Isla Pinzón（Duncan Island）
Bahía de Conway，Isla Santa Cruz
Bahía de Cartago，Isla Isabela（Albemarle
Bahía de Cartago，Isla Isabela（Albemarle
Bahía de Cartago，Isla Isabela（Albemarle
官
岂
둗
Bahía de Academy，Isla Santa Cruz
∞
\cdots
\vdots
0
∞
188－34
m
n
i
i
+
$\stackrel{+}{\infty}$
$\stackrel{\infty}{\infty}$
n
\tilde{j}
\dot{m}
+
？
क
0
6
\dot{m}
\vdots
\vdots
$\stackrel{\rightharpoonup}{2}$
Bahía de Stephens，Isla San Cristóbal
42－33 Bahía de Stephens，Isla San Cristóbal
为
$\left.\begin{array}{rl}\text { 48－33 } & \text { Isla Santa Fé（Barrington Island）} \\ 804-38 & \text { Isla Onslow，N of Isla Floreana } \\ \text {（Charles Island）}\end{array}\right\}$
$\begin{array}{ll}\text { 199－34 Black Beach，Isla Floreana（Charles Island）} \\ 166-34 & \text { Black Beach，Isla Floreana（Charles Island）}\end{array}$ S of Black Beach，Isla Floreana
（Charles Island）
Isla Osborn，Bahía
359－35 Isla Osborn，Bahía de Gardner，Isla Espafiola
（Hood Island）
30－33 Bahía de Gardner，Isla Española （Hood Island）
24-33 Isla Osborn, Bahía de Gardner, Isla Española
27-33 Bahía de Gardner, Isla Española (Hood Island) Barbatia (Calloarca) alternata (Sowerby)
Mexico: Gulf of California
$1072-40$
$1078-40$
$1064-40$
$715-37$
Bahta Pefía de Tepoca, Sonora Sonora
BS 27a Willard, Bahía de San Luis Gonzaga
$1039-40$ E of Isla Tiburón Bahía de San Luis Gonzaga
Barbatia (Fugleria) illota (Sowerby)
537-36 Bahía de los Angeles
Shore, head of bay
Shore
Shore, on island
Shore
$5-9 \mathrm{fms}$
Shore
13 fms
Shore
Shore, on island
Shore
$5-9 \mathrm{fms}$
Shore
13 fms
Shore
Shore, on island
Shore
$5-9 \mathrm{fms}$
Shore
13 fms
Shore
Shore, on island
Shore
$5-9 \mathrm{fms}$
Shore
13 fms
Dredge. Rock, sea urchins
and sponges
thirteen
әajea วuo
 two valves
U
$\stackrel{y}{5}$
$\stackrel{3}{0}$
$\tilde{0}$
0
$\frac{8}{51}$
0
0
0
one
four
one
four
one
one
eight
one valve
one juvenile
three one (fine) valve (fine)
one (fine)

Shore
Shore

10 fms
$11-13 \mathrm{fms}$
$10-20 \mathrm{fms}$
Shore
16 fms
$6-10 \mathrm{fms}$

Shore Shore Shore 40 fms Shore Shore 34 fms

Sand, broken shell
Shingle
Rocky beach
Sand
Rock, sand
Shale
Shingle
Rock
Shell.
Rock, reef and tidepools; rich six ond one valve
-
प्र
liaqs 'pues
莒
Shell, mud

Shingle
Rock

Depth	Remarks
Shore	Rocky beach; protected and exposed coastline
12 fms	Mud
20 fms	Mud
$17-25 \mathrm{fms}$	
Diving, 0-3 fms	Rock
Rocky reef	Low tide
Shore	Rock
Shore	Rock
Shore on small island in bay	Rock
Shore, small island at entrance	Rock
Shore	Rock
Shallow water	Coral
Shore, on island	Shingle
Shore	Rock
Shore	Rock
Shore	Reef inside outer island
Shore	Rock
Shore	Rock
Shallow water	Coral (Pocillopora)
2 fms	Mud, rock
15 fms	Mud, rock
Shore	Rock, sand

$\begin{array}{cl}\text { Station } & \text { Location } \\ \text { 1713-49 } & \text { Punta Entrada, Isla Magdalena }\end{array}$
Mexico: Gulf of California

570-36	E of Isla Tiburón
601-36	Bahía Agua Verde
BS 2155	Bahía de San José del Cabo
2588-54	Isla Isabel
749-37	Isla Isabel
124-33	Isla Isabel
Mexico	
2-31	Bahía Tenacatita
Dawson 126 $260-34$	Inner bay of Acapulco, Guerrero
260-34	El Bufadero
Costa Rica $466-35$	Puerto Parker, opposite Punta Abajo

Puerto Parker, opposite Punta Abajo

Bahía Octavia
Bahía de Cupica
Puerto Utría
Puerto Utría
Puerto Utría
Puerto Utría
Isla Gorgona
易

さ~N Ecuador
one (fine)
many juvenile
nine (coarse and
fine)
four (fine)

one (coarse)
six (coarse)
one (coarse)
four (coarse and
fine)
one (coarse)
thirty one (coarse)
two (fine)
one (coarse)
one (fine)
ten valves (coarse)
ten valves (coarse)
two (fine)
two (fine)
four and a half
(coarse)
four (coarse and
fine)
one valve (fine)
one valve (fine)
seven (coarse)
one (coarse)
five (coarse)

U
प
4
Sand with rock patches
Fine sand, coralline

Reef with breakers
Rock
Shore of small island
North shore
$8-10 \mathrm{fms}$
Reef
Shore
Shore
Shore
Shore
Shore
Shore
Shore
West shore
Shore
Shallow water
Shore
Shore
West shore
Shore
5 fms
32 fms
Shore
Shore

Specimens
thirty six (coarse)
seventeen (coarse)
eight (coarse)
twenty (coarse)
one (fine)
five
one valve
two
one
one valve
one
one
two
thirteen
ten
one valve
one
many
eleven
seven
Remarks
Rock
Rock
Rock
Rock
Rock
Rocky reef
Shingle
Low tide
Loose rock, sand
Mud, sand
Sand
Shingle
Coral
Rock
Coral

24-33 Isla Osborn, Bahía de Gardner, Isla Española
27-33 Bahía de Gardner, Isla Espaniola (Hood Island)
847-38 9 $1 / 2 \mathrm{mi}$ SW of Zorritos Light
Acar bailyi Bartsch
California
W.K.Emerson La Jolla

Mexico: Baja California, Pacific coast
22-32 Bahía del Tortuga
Mexico: Gulf of California

Shore
Shore
Shore
Shore
Shore
Shore

27-33
ACAR baily
California
Mexico: Baja
BS 224
$22-32$

o: Gulf $1049-40$ BS 275 $591-36$ $749-37$ $19-32$ $2601-54$

2601-54 Lagoon behind NE Point, Isla María Cleofas, Las Tres Marias

274-34 Off south entrance to Bahía Tenacatita 133-34 Bahía Braithwaite, Isla Socorro

141-34 Bahía Sulphur, Isla Clarion
140-34 Bahía Sulphur, Isla Clarión
S of Punta Mala
\dot{m}
6
\cdots
\cdots
Mexico
Costa

Coral	many
Rock	five
Coral	fourteen
Coral	eight
Rock	two
Coral	thirteen
Coral	two
Rock	many
Rock	four
Rock	one
Rock, sand	three
Sand with rock patches	seven valves
Rock, sand	seven
Rock	two
	many
Rock, sand	many
Fine sand, coralline	one (dead)
	seven
Coralline, gray coarse sand	four valves. Ballast?*
Coarse sand, sponge-covered rock	one and a half (dead)

Shallow water
Shore
Shallow water
Shallow water
Shore
Shallow water
Shallow water
Shore
Shallow water
Reef
Shore
f fms
West shore
Shore of small island
North shore
32 fms
Shore
$23-25 \mathrm{fms}$
$30-31 \mathrm{fms}$

Bahía Honda
Bahía Honda I Galapagos Islands
$782-38$ Bahía de Darwin, Isla Genovesa (Tower Island) 782-38 Bahía de Darwin, Isla Genovesa (Tower Island) 65-33 N of Cerro Tagus, Isla Isabela (Albemarle

Island) $\begin{array}{ll}\text { 350-35 } & \text { Isla Baltra (South Seymour Island) } \\ \text { 173-34 } & \text { Off Isla Baltra (South Seymour Island) }\end{array}$
782-38 (S (South Seymour Island

188-34 Bahía de Cartago, Isla Isabela (Albemarle
Island) 170-34 Bahía de Stephens, Isla San Cristóbal 170-34 Bahia de Stham Island)
(Chat 82-33 Bahía de Conway, Isla SantaCruz 11-32 Bahía de Conway, Isla SantaCruz

Acar pusilla (Sowerby)

22-33 Isla La Plata
 Ecuador

Arcopsis solida (Sowerby)

1271-41 3/4 mi SE of Cat Rock, Anacapa Island
 Mexico: Baja California, Pacific coast
 1257-41 3 mi NW of Isla Natividad

*See same number in the list of A. pacifica.
Specimens
six
one
one
seven
four
one
one
six
two and one valve
one
three and one valve
many
ten
twenty two
two
one valve
one valve
eight
eight
thirty four
many
sixteen
four
four
fourteen
one
two
fifteen
one
one
three

on
Remarks
Rock, reef, tide pools; rich
Rock, conglomerate shelf,
\quad few tide pools
Sand, kelp
Rocky beach, protected and
\quad exposed coastline
Sand, rock

Sand, shell
Basket stars
Rock, reef
Shingle
Rock
Rock
Rocky reef
Rock
Rock
Shingle

Rocky reef
Rock
Shingle
Shingle
Enclosed harbor
Rocky beach
Rock
Rock
Shingle
Shingle
Strombus shell
Rocky, tide pool
Rocky beach, sponges,
\quad crabs. -0.3'tide
Rol

$\begin{array}{rl}\text { Station } & \text { Location } \\ 2022-51 & 10 \text { mi W of Punta Malarrimo } \\ 1956-50 & \text { Punta Abreojos } \\ & \\ \text { 617-37 } & \text { Off Punta Pequeña } \\ 1713-49 & \text { Punta Entrada, Bahía de la Magdalena } \\ 1719-49 & \text { Eshore of Isla Santa Margarita }\end{array}$

	$\begin{aligned} & \text { Ư } \\ & \text { O} \end{aligned}$		$\begin{aligned} & \text { 己 } \\ & \text { E } \\ & \text { N } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { प्ठ } \\ & \text { Hax } \end{aligned}$		$\begin{aligned} & \text { U } \\ & \text { O } \\ & \hline \end{aligned}$	敢
		$\begin{aligned} & \text { : } \\ & 0 \\ & \text { 心. } \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \text { en } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { U } \\ & \ddot{\sim} \end{aligned}$			E H 0 0 ∞

591－36 Puerto Escondido，S of Loreto

1749－49	East shore，Puerto Escondido，S of Loreto
$669-37$	Off Puerto Escondido
$1104-40$	Bahía de Agua Verde
$522-36$	Bahía de Agua Verde
$742-37$	Bahía de San Ignacio，Sinaloa
$518-36$	North side，Isla San Francisco
$1737-49$	Bahía San Gabriél，Isla Espíritu Santo
623－37	Cabeza Ballena
$1784-49$	Bahía de San Lucas
Costa Rica	
$466-35$	Puerto Parker，opposite Punta Abajo
Panama	
$860-38$	8 mi E of Panama City
$14-32$	Balboa，Canal Zone
$439-35$	Puerto Piñas

[^3]

Anadara (Anadara) tuberculosa (Sowerby)
Costa Rica
Anadara (Larkinia) grandis (Broderip and Sowerby)
Mexico Mexico

Panama
Acc. no. 1095 Isla Taboga, collected by Helen Hoyt
Anadara (Larkinia) multicostata (Sowerby) Mexico: Gulf of California

1056-40 Between Isla Angel de la Guarda and
559-36 S of Isla Partida
531-36 Bahía San Francisquito
1516-46 Ensenada de San Francisco
576-36 S of Isla Tortuga
526-36 S of Punta Mangles
1740-49 Bahi de Agua Verde Espíritu Santo
1112-40 Bahía San Gabriél, Isla Espíritu Santo
Canal de San Lorenzo
$606-36$
$1111-40$

Rock, shell	one
Coarse sand	one valve
Sand, nullipores	one
Sand, rock	one
Sand, rock, shell	eight small
Sand	one
Rock, sand	one
Basket stars	one juvenile
Sandy mud, sand, shell	one juvenile
Rock, mud	three valves
Mud	one and three valves
Sand	one juvenile
Sand, seaweed	one
Sand, cake urchins	fourteen
Mud	one
Diving. Rock, mud, sand	one, length 75 mm
Mud	one
Sand, shell	ten juvenile
Coralline	thirty two large
Coarse white sand	two large
Sand, coralline	two
Sand	one juvenile

183-34	Between Isla Albany and Isla Santiago (James Island)
182-34	Off Bahía de James, Isla Santiago (James Island)
$328-35$	Ensenada Tagus, Isla Isabela (Albemarle Island)
790-38 Isla Baltra (South Seymour Island) 347-35 Off Isla Seymour (N. Seymour Island) $799-38$ Bahía de Cartago, Isla Isabela (Albemarle Island)	
816-38 Nof Isla Española (Hood Island)	

[^4]$\begin{aligned} 1078-40 & \text { Bahía de Tepoca, Sonora } \\ 714-37 & \text { Off Punta Willard, Bahía de San Luis Gonzaga }\end{aligned}$
1064-40 Off Isla Willard, Bahía de San Luis Gonzaga
1087-40 Ensenada de San Francisco
1747-49 Puerto Escondido, S of Loreto
$\begin{aligned} \text { 1096-40 } & \text { Puerto Escondido, S of Loreto } \\ \text { 656-37 } & \text { Bahía de Agua Verde }\end{aligned}$
Bahía de Santa Lucía, Acapulco,
Off Punta Abajo
Off Isla de la Nuez, Isla del Coco
Isla Taboga
Isla Salango
182-34
328-35
79
$719-37$
$1078-40$
Mexico $2596-54$ Rica

Panama
Ecuador
Specimens
five
one valve
one
sixteen valves
one valve
three valves
one
four valves
one
eight valves
one valve
two valves
one valve
five valves
two valves
four valves, one
valve fresh

Remarks
Rock, large shells, gorgonids
Rock, large shells, gorgonid
Mud
Mud
Mud, shell
Rock, sand

Rock, sand Coralline, gorgonids
Coarse sand, shell, mud
Coralline, gorgonids
$\begin{array}{cc}\text { Station } & \text { Location } \\ \text { 209-34 } & \text { Off Bahí }\end{array}$

Station	Location
209-34	Off Bahía de Santa Elena
Anadara (Scapharca) cumingiana (Nyst)	
Mexico: Gulf of California	
BS 2043	$31^{\circ} 12^{\prime} \mathrm{N}, 114^{\circ} 01^{\prime} 30^{\prime \prime} \mathrm{W}$
1061-40	Off Punta Willard, Bahía de San Luis Gonzaga
BS 2038	Bahía de San Luis Gonzaga
BS 2054	$27^{\circ} 03^{\prime} \mathrm{N}, 110^{\circ} 10^{\prime} \mathrm{W}$
BS 2025	Mouth of Bahía Concepción
656-37	Bahía de Agua Verde
Costa Rica	
253-34	Boca de Culebra
Ecuador	
396-35	Isla Salango
Anadara (Scapharca) biangulata (Sowerby)	
Mexico: Gulf of California	
BS 2124	Punta San Felipe
BS 2030	Bahía de Los Angeles
BS 2017	Off Puerto Escondido, S of Loreto
BS 2145	NW of Isla de San Gabriél
BS 2012	Bahía San Gabriél, Isla Espíritu Santo
BS 2013	W of Canal de San Lorenzo
BS 248	Off S end of Isla Espíritu Santo

Mexico $870-38$ Isla Isabel
Panama
$244-34$
S of Isla M
244-34 S of Isla Medidor, off Bahía Honda
Anadara (Scapharca) aviculaeformis (Nyst) 870-38 Isla Isabel Mexico

シ pues צวxiq วu!t Mud
Shell, sand
Rock, sand
Fine sand
Mud
Sand, gravel, mud
Fine sand
Fine black sand
Black sand

$\stackrel{3}{2}$

Panama

457-35 Islas Secas
Anadara
Mexico
1718-49 Canal de Marcy, Bahía de la Magdalena, Baja California

Sana

Anadara (Scapharca) obesa (Sowerby)
Guatemala

930-39 Off San José Light

Anadara (Cunearca) nux (Sowerby)
Bahía Tenacatita
Bahía Tenacatita
Bahía Tenacatita
Olf Acapulco
El Bufadero
Near San José Light
Near San José Light
Off San José Light
Off San José
476-35 \quad Bahía de Salinas
476 Puerto Parker, near Punta Abajo
Boca de Culebra
257-34 Bahía Cocos
$\begin{array}{ll}\text { 116-33 } & \text { Bahía Cocos } \\ 939-39 & \text { Golfo Dulce }\end{array}$

$964-39$
$965-39$
$121-33$
$868-38$
$927-39$
$259-34$
ala
$929-36$
$930-39$
$770-38$
Rica
$476-35$
$477-35$
$468-35$
$253-34$
$257-34$
$116-33$
$939-39$
Mexico
Costa
Colombia
范

Anadara (CUNEARCA) AEQUATORIALIS (Orbigny)
770-38 Off San José
LUNARCA VESPERTINA (MöRCH) Mexico: Baja California, Pacific coast

Mexico: Gulf of California
638-37 Bahía San Gabriél, Isla Espíritu Santo 632-37 Bahía San Gabriél, Isla Espíritu Santo LUNARCA SP.

Panama 1937

Galapagos Islands
 BS 456 Isla Marchena

 (Albemarle Island)Noetia reversa (Sowerby)
Mexico: Gulf of California
682-37 Off Bahia Concepcion
$682-37$
$632-37$
Bahía San Gabriél, Isl
Espiritu
two juvenile
three
twelve juvenile
two juvenile
two juvenile

one and one valve
one and one valve
five valyes

two valves

five valves
Rock, sand
Fine sand
Mud
Nullipores

Sand, dead leaves

Shore,
1 fms
$0-15 \mathrm{fm}$
-10 fms
$1-3 \mathrm{fms}$
2 fms
23 fms

Bahía Tenacatita
Off Acapulco
Outside Laguna de Chacahua
Outside Laguna de Chacahua

11 mi NW of Corinto

Bahía Octavia

 of CaliforniaBahía de San Ignacio, Sinaloa
Islas Secas
Isla Medidor, off Bahía Honda
min ${ }^{\infty}$
121
 Nicaragua 962-39
Colombia 434-35
Mexdonella
Mexico: Gulf
BS 2057
Mexico 274-34
BS 342
$244-34$

121-33 Bahía Tenacatita $868-38$ Off Acapulco $927-39$ Outside Laguna de Chacahua $765-38$ Outside Laguna de Chacahua	
Nicaragua	
962-39	
Colombia	
434-35 mi NW of Corinto	Bahía Octavia
SHeldonella delgada (Lowe)	
Mexico: Gulf of California	
BS 2057	Bahía de San Ignacio, Sinaloa
Mexico	
274-34	Entrance to Bahía Tenacatita
Panama	
BS 342	Islas Secas
$244-34$	Isla Medidor, off Bahía Honda

REFERENCES

Adams, C. B.
1852. Catalogue of Shells collected at Panama, with Notes on Synonymy, Station, and Habitat. N. Y. Lyceum Nat. Hist. Ann. 5:229-548.

Adams, Henry and Arthur

1858. The Genera of Recent Mollusca; arranged according to their organization. London. 3 v . in 4.
Arnold, Ralph
1859. New and Characteristic Species of Fossil Mollusks from the oilbearing Tertiary Formations of Southern California. U. S. Natl. Mus. Proc. 32:525-546, pls. 38-51.
Bartsch, Paul
1860. The West American Mollusks of the genus Acar. U. S. Natl. Mus. Proc. 80 (9), 4 pp., 1 pl.

Bernard, Félix
1898. Recherches Ontogéniques et Morphologiques sur la Coquille des Lamellibranches. Première partie. Taxodontes et Anisomyaires. Ann. des Sci. Nat. Zool. 8:1-208, 12 pls.

Broderip, W. J. and Sowerby, G. B.
1829. Observations on New or Interesting Mollusca contained, for the most part, in the Museum of the Zoological Society. Zool. Jour. 4:359-379.
Bruguiére, J. G.
1789-1792. Histoire Naturelle des Vers. (Encyclopédie méthodique). Paris. vol. 1, 757 pp .

Carpenter, P. P.
1856a. Catalogue of the Reigen Collection of Mazatlan Mollusca in the British Museum. London. 1855-57. xvi, 552 pp.
1856b. Descriptions of Shells from the Gulf of California, and the Pacific Coasts of Mexico and California. Part II. Zool. Soc. London. Proc. 24:198-208.
1863. Review of Prof. C. B. Adam's 'Catalogue of the Shells of Panama,' from the Type Specimens. Zool. Soc. London. Proc. 1863:339-369.
Chemnitz, J. H.
1784. In Martini, F. H. W. und Chemnitz, J. H. Neues systematisches Conchylien-cabinet. Nürnberg. vol. 7: Arca.
Conrad, T. A.
1847. Observations on the Eocene Formation, and Descriptions of one hundred and five new Fossils of that Period, from the Vicinity of Vicksburg, Mississippi, with an Appendix. Acad. Nat. Sci., Phila. Proc. 3:280-299.
1848. Observations on the Eocene Formation, and Descriptions of one hundred and five new Fossils of that Period, from the Vicinity of Vicksburg, Mississippi; with an Appendix. Acad. Nat. Sci., Phila. Jour. ser. 2, vol. 1:111-134, pls. 11-14.
1862. Descriptions of New Genera, Subgenera and Species of Tertiary and Recent Shells. Acad. Nat. Sci., Phila. Proc. 14:284-291.
1865. Catalogue of the Eocene and Oligocene Testacea of the United States. Amer. Jour. Conchology. 1:1-35.

Dall, W. H.
1886. Report on the Mollusca. Part I. Brachiopoda and Pelecypoda. (Reports on the Results of Dredging . . . in the Gulf of Mexico (187778) and in the Caribbean Sea (1879-80), by the U. S. Coast Survey Steamer "Blake." XXIX.) Harvard. Univ. Mus. Compar. Zool. Bul. 12(6):171-318, 9 pls.
1898. Contributions to the Tertiary Fauna of Florida with Especial Reference to the Silex Beds of Tampa and the Pliocene Beds of the Caloosahatchie River. . . Part IV. Wagner Free Inst. Sci. Trans. 3 :viii, 571-947, pls. 23-35.
1909. Report on a Collection of Shells from Peru, with a Summary of the Littoral Marine Mollusca of the Peruvian Zoological Province. U. S. Natl. Mus. Proc. 37 :147-294, pls. 20-28.

Dall, W. H. and Ochsner, W. H.
1928. Tertiary and Pleistocene Mollusca from the Galapagos Islands. Calif. Acad. Sci. Proc. ser. 4, vol. 17:89-139, pls. 2-7, 5 text-figs.
Dunker, W. B. R. H.
1868. Novitates Conchologicae. Mollusca Marina. Cassel. 1858-70. 144 pp., 45 pls. Part 13.
Eldridge, G. H. and Arnold, R.
1907. The Santa Clara Valley, Puente Hills, and Los Angeles Oil Districts, Southern California. U. S. Geol. Survey. Bul. 309. 266pp., 35 pls.

Frizzell, D. L.
1946. A Study of two Arcid Pelecypod Species from Western South America. Jour. of Paleontol. $20: 38-51$, pl. 10, 13 text-figs.

Garth, J. S.
1946. Distribution Studies of Galapagos Brachyura. Allan Hancock Pacific Expeds. 5:603-638, 10 charts.
Gmelin, J. F.
1791. Linné, Carl von. Systema Naturae per Regna Tria Naturae . . . Ed. 13, aucta, reformata, cura J. F. Gmelin. Holmiae. vol. 1, pt. 6, pp. 3021-4120.
Grant, U. S. IV and Gale, H. R.
1931. Catalogue of the Marine Pliocene and Pleistocene Mollusca of California and adjacent Regions. San Diego Soc. Nat. Hist. Mem. 1. 1036 pp.
Gray, J. E.
1840. Synopsis of the Contents of the British Museum. Ed. 42. London. iv, 370 pp .
1842. Synopsis of the Contents of the British Museum. Ed. 44. London. iv, 308 pp .
1847. A List of the Genera of Recent Mollusca, their Synonyma and Types. Zool. Soc. London. Proc. 15:129-219.
1857. A Revision of the Genera of some of the Families of Conchifera or Bivalve Shells. Part III. Arcadae. Ann. and Mag. Nat. Hist. ser. 2, vol. 19:366-373.
Hanna, G. D. and Hertlein, L. G.
1927. Expedition of the California Academy of Sciences to the Gulf of California in 1921: Geology and Palaeontology. Calif. Acad. Sci. Proc. ser. 4, vol. 16:137-157, pl. 5.

Heath, Harold
1941. The Anatomy of the Pelecypod family Arcidae. Amer. Philos. Soc. Trans. new ser., vol. $31: 287-319,22$ pls.

Helbling, G. S.
1779. Beyträge zur Kenntniss neuer und seltener Konchylien, K. Ceska spolecnost nauk, Prague. Abh. 4:102-131.

Hertlein, L. G.
1951. Description of a new Pelecypod of the genus Anadara from the Gulf of Mexico. Texas Jour. Sci. 3 (3) :486-489, 7 figs.

Hertlein, L. G. and Strong, A. M.
1943. Eastern Pacific Expeditions of the New York Zoological Society. XXXII. Mollusks from the West Coast of Mexico and Central America. Part II. Zoologica [New York] 28:149-168, pl. 1.

Keen, A. Myra
1937. An Abridged Check List and Bibliography of west North American Marine Mollusca. Stanford University, California. 84 pp.
Kobelt, W.
1891. Die Gattung Arca L. In Martini, F. H. W. und Chemnitz, J. H. Systematisches Conchylien-cabinet. Nürnberg. vol. 8, no. 2. 238 pp., 48 pls.
Koenen, Adolph von
1885. Ueber eine Paleocäne Fauna von Kopenhagen. Gesell. d. Wiss., Göttingen. Abh., Phys. Kl. 32(2), 128 pp., 5 pls.

Koninck, L. G. de
1842. Description des Animaux Fossiles qui se Trouvent dans le Terrain Carbonifère de Belgique. Liége, 1842-44. iv, 649 pp ., 69 pls.
Lamarck, J. B. P. A. de Monet de
1819. Histoire Naturelle des Animaux sans Vertèbres. Paris. vol. 6. 343 pp.

Linné, Carl von
1758. Systema Naturae per Regna Tria Naturae . . . Ed. 10. Holmiae. 1758-59. 2 vols.

Lowe, H. N.
1935. New Marine Mollusca from West Mexico, together with a List of Shells Collected at Punta Penasco, Sonora, Mexico. San Diego Soc. Nat. Hist. Trans. 8 (6) :15-34, pls. 1-4.

Mabille, J. F.
1895. Mollusques de la Basse Californie recueillis par M. Diguet. Soc. Philomathique, Paris. Bul. ser. 8, vol. 7:54-76.
McLean, R. A.
1951. The Pelecypoda or Bivalve Mollusks of Porto Rico and the Virgin Islands. N. Y. Acad. Sci. Sci. Surv, of Porto Rico and the Virgin Islands. 17(1), $183 \mathrm{pp} ., 26$ pls.
MacNeil, F. S.
1938. Species and Genera of Tertiary Noetinae. U. S. Geol. Survey. Prof. Paper 189A. 49 pp., 6 pls.

Matthias, Martin

1914. Vergleichend anatomische Untersuchungen über den Darmkanal und das Herz einiger Arcaceen. Jenaische Ztschr. f. Naturw. 52:363-444, pls. 7-10, 5 text-figs.
Maury, Carlotta J.
1915. Santo Domingo type Sections and Fossils. Part I. Bul. of Amer. Paleontol. 5 (29), 251 pp., 39 pls.
1916. The recent Arcas of the Panamic Province. Paleontographica Americana. 1:163-208, pls. 29-31.
Mörch, O. A. L.
1860-61. Beiträge zur Molluskenfauna Central-Amerika's. Malakozool. Blätter. 7:170-213.

Murchison, Sir R. I.
1844. Outline of Geology of the Neighbourhood of Cheltenham. New ed., augm. and rev. by H. E. Strickland . . . and M. J. Buckman. London. 109 pp., 14 pls.

Nelson, E. T.
1870. On the Molluscan Fauna of the later Tertiary of Peru. Conn. Acad. Sci. Trans. 2:186-206.

Nyst, H. P.
1848. Tableau Synoptique et Synonymique des Espèces Vivantes et Fossiles de la Famille des Arcacées . . . Première partie. - Genre ARCA. Acad. Roy. Sci. Belgique. Mém. 22, 79 pp.

Olsson, A. A.
1924. Notes on Marine Mollusks from Peru and Ecuador. Nautilus. $37: 120-$ 130.
1932. Contributions to the Tertiary Paleontology of northern Peru: Part 5, The Peruvian Miocene. Bul. Amer. Paleontol. 19 (68), 264 pp., 24 pls.

Orbigny, Alcide d'
1844. Paléontologie Française. Terrains Crétacés. Paris. vol. 3, Lamellibranchs. 807 pp., pls. 237-489.
1846. Mollusques. Lamellibranches. In Voyage dans l'Amérique Méridionale. Paris, Strasbourg. 5(3):489-758.

Palmer, Katherine van Winkle
1951. Catalog of the First Duplicate Series of the Reigen Collection of Mazatlan Shells in the State Museum at Albany, New York. N. Y. State Mus. Bul. 342, 79 pp., 1 pl.

Patten, William
1886. Eyes of Molluscs and Arthropods. Naples. Zool. Sta. Mitt. 6:542-756, pls. 28-32.

Pelseneer, Paul
1911. Les Lamellibranches de l'Expédition du Siboga. Partie anatomique. In Siboga-Expeditie. Mon. $53 \mathrm{a}, 125 \mathrm{pp}$., 26 pls .

Philippi, R. A.

1845-51. Abbildungen und Beschreibungen neuer oder wenig gekannter Conchylien. Cassel. 3 vols.
1847. Testaceorum Novorum Centuria. Ztschr. f. Malakozool. 4:71-77, 84-96, 113-127.

Phillips, John
1829. Illustrations of the Geology of Yorkshire. York. vol. 1, xvi, 192 pp ., 23 pls.

Pilsbry, H. A. and Lowe, H. N.
1932. West Mexican and Central American Mollusks collected by H. N. Lowe, 1929-1931. Acad. Nat. Sci., Phila. Proc. 84:33-144, 17 pls.
Reeve, L. A.
1843-44. Monograph of the genus ARCA. In his Conchologia Iconica. London. vol. 2, 17 col . pls. with letter press.
Reinhart, P. W.
1935. Classification of the Pelecypod Family Arcidae. Brussels. Mus. Roy. d'Hist. Nat. Bul. 11(13), 68 pp., 5 pls.
1937. Three new Species of the Pelecypod Family Arcidae from the Pliocene of California. Jour. of Paleontol. 11:181-185, pl. 28.
1939. The Holotype of Barbatia (Acar) gradata (Broderip \& Sowerby). San Diego Soc. Nat. Hist. Trans. 9:39-45, pl. 3.
1943. Mesozoic and Cenozoic Arcidae from the Pacific Slope of North America. Geol. Soc. of America. Spec. paper 47, 117 pp., 15 pls.
Röding, P. F.
1798. Museum Boltenianum . . Pars secunda, continens Conchylia sive Testacea univalvia, bivalvia et multivalvia. Hamburgi. viii, 199 pp.
Say, Thomas
1822. An Account of some of the Marine Shells of the United States. Acad. Nat. Sci., Phila. Jour. 2(2):257-276.
Sheldon, Pearl G.
1916. The Atlantic Slope Arcas. Palaeontographica Americana. 1(1), 101 pp., 16 pls.
Sowerby, G. B.
1833. [Characters of New Species of Mollusca and Conchifera, collected by Mr. Cuming. Byssoarca and Arca genera.] Zool. Soc. London. Proc. 1833:16-22.

Stewart, R. B.
1930. Gabb's California Cretaceous and Tertiary Type Lamellibranchs. Acad. Nat. Sci., Phila. Spec. pub. 3, 314 pp., 17 pls.
Stoliczka, Ferdinand
1871. Cretaceous Fauna of southern India. Vol. 3. The Pelecypoda, with a Review of all Known Genera of this Class, Fossil and Recent. India. Geol. Survey. Palaeontologica Indica. ser. 6, 537 pp ., 50 pls .
Strong, A. M.
1932. An overlooked Arca from Southern California. Nautilus. 46:27-29.

Swainson, William
1833. Zoological Illustrations, or Original Figures and Descriptions of New, Rare, or interesting Animals, selected chiefly from the Classes of Ornithology, Entomology, and Conchology. London. ser. 2, vol 3.
Wood, William
1828. Supplement to the Index Testaceologicus; or a Catalogue of Shells, British and Foreign. London. vi, 59 pp., 8 pls.

PLATES

PLATE 11

Fig. 1. Irca mutabilis (Sowerby) 1833. Puerto Parker, Costa Rica. Dorsal view showing narrow ligamental area. Length, 30 mm .
Fig. 2. Irca mutabilis (Sowerby) 1833. Isla Isabel, Gulf of California. Dorsal view showing very wide ligamental area. Length, 32 mm .
Fig. 3. Barbatia lurida (Sowerby) 1833. Isla Espíritu Santo, Gulf of California, a. Outside of right valve. b. Inside of the same. Length, 28.7 mm .
Fig.t. B. (Cucullaearca) reeveana (Orbigny) 1846. Isla Angel de la Guarda, Gulf of California. Detail of periostracum. Length, 70 mm .
Fig. 5. B. (Cucullacarca) reeveana (Orbigny) 1846. Off Punta Pequeña, Baja California, a. Outside of right valve of young specimen. b. Dorsal view of the same. Note that the ligament is behind the umbones. Length, 10.3 mm .
Fig. 6. B. (Fugleria) illota (Sowerby) 1833. Puerto Utría, Colombia. Inside of left valve. Note the obsolete teeth in the middle of the hinge. Length, 38.1 mm .
Fig. 7. B. (Fugleria) illota (Sowerby) 1833. Off Puerto Escondido, Gulf of California. Inside of left valve. Note the more ovate form. Length, 23 mm .
Fig. 8. B. (Fugleria) illota (Sowerby) 1833. Bahía Octavia, Colombia. Hinge of young specimen with continuous row of teeth. Length, 13.2 mm .
Fig. 9. B. (Cucullaearca) recveana (Orbigny) 18+6. Isla Wenman, Galapagos Islands. Young specimen with yellow prodissoconch. Length, 2.7 mm .

PLATE 12

Fig. 10. Arcopsis solida (Sowerby) 1833. Bahía de Cartago, Albemarle Island, Galapagos Islands. Young specimen showing sculpture similar to that of the genus \hat{A} car. Length, 5 mm .
Fig. 11. Lcar gradata (Broderip and Sowerby) 1829. Isla Isabel, Gulf of California. Outside of right valve of young specimen. Coarsely sculptured form. Length, 10.2 mm .
Fig. 12. Icar gradata (Broderip and Sowerby) 1829. Off Cabo de San Francisco, Ecuador. Outside of right valve of young specimen. Finely sculptured form. Length, 9 mm .
Fig. 13. Acar pusilla (Sowerby) 1833. Isla La Plata, Ecuador. Outside of left valve. Length, 7 mm .
Fig. 14. Icar bailyi Bartsch 1931. (forma insularis). Islas Secas, Panama. Outside of left valve. Length, 10.2 mm .
Fig. 15. Icar bailyi Bartsch 1931. (forma insularis). Islas Secas, Panama. a. Dorsal view. b, Outside of right valve. c. Inside of right valve. d. Outside of left valve. e. Inside of left valve. Length, 9 mm .

PLATE 15

Fig. 16. Arcopsis solida (Sowerby) 1833. Puerto San Carlos, Sonora, Gulf of California. Dorsal view to show ligament. Note the transverse striations. Length, 17.2 mm .
Fig. 17. Inadara tuberculosa (Sowerby) 1833. Bahía de Salinas, Costa Rica, a. Outside of right valve. b. Dorsal view. Length, 56 mm .
Fig. 18. A. (Scapharca) reinharti (Lowe) 1935. Puerto Escondido, Gulf of California. a. Outside of right valve. b. Outside of of left valve. c. Dorsal view.
Fig. 19. Inadara cf. reinharti (Lowe) 1935. Bahía de Santa Lucia, Acapulco, Guerrero, Mexico. a. Outside of right valve. b. The same from inside. Length, $7+\mathrm{mm}$.

PLATE 14

Fig. 20. Inadara (Scapharca) reinharti (Lowe) 1935. Bahía de Chatham, Isla del Coco, Costa Rica. a. Outside of left valve. b. Dorsal view. c. Hinge. Length, 43 mm .

Fig. 21. A. (Scapharca) aviculacformis (Nyst) 1848. Isla Isabel, Gulf of California. a. Outside of left valve. b. Dorsal view. c. Inside of left valve. Length, 54.5 mm .

Fig. 22. 1. (Scapharca) emarginata (Sowerby) 1833. Canal de Marcy, Bahía de la Magdalena, Baja California. Outside of left valve. Young specimen. Length, 11.5 mm .
Fig.23. 1. (Scapharca) aviculaeformis (Nyst) 1848. Islas Secas, Panama. Inside of left valve. Length, 34.6 mm .

$20 c$

PLATE 15

Fig. 24. Lunarca vespertina (Mörch) 1861. Off Punta Pequeña, Baja California. a. Outside of left valve. b. Inside of the same. Length, 17.2 mm .
Fig. 25. Lunarca sp. Panama. a. Outside of left valve. b. Inside of the same. Length, 53 mm .
Fig. 26. Lunarca sp. Isla Marchena, Galapagos Islands. Outside of right valve. Length, +5.7 mm .
Fig. 27. Inadara (Cunearca) aequatorialis (Orbigny) 1846. Off San José, Guatemala, a. Dorsal view of young specimen. b. Outside of right valve, both valves together. c. Outside of left valve. Length, $1+\mathrm{mm}$.

PLATE 16

Fig. 28. Inadara (Scapharca) obesa (Sowerby) 1833. Off San José, Guatemala. a. Dorsal view. b. Outside of left valve. Length, 26.3 mm .
Fig. 29. A. (Cunearca) nux (Sowerby) 1833. Off San José, Guatemala. a. Outside of right valve. b. Outside of left valve, c. Dorsal view. Length, 20.2 mm .

ALLAN HANCOCK PACIFIC EXPEDITIONS

VOLUME 20

I NDEX

References to illustrations are in bold face type.
abbotti, Lithophaga, 9, 95, 101, 102
Acar, 188, 193
bailyi, 189, 190, 222
insularis, 241
domingensis, 190
gradata, 188, 189, 190, 191, 192, 219, 241
gradata, 188
panamensis, 188
panamensis, 189
pernoides, 189, 190
pusilla, 178, 189, 190, 191, 223, 241
insularis, 191
reticulata, 190, 191
(Acar) pernoides, Barbatia, 190, 191
reticulata, Barbatia, 189
rostae, Barbatia, 188
achatinus, Mytilus, 30
adamsi, Arcopsis, 193
adamsiana, Hormomya, $9,10,14,37$,
39, 45, 47, 111, 161
adamsianus, Mytilus, 9, 37, 46
Adula, 6, 16, 18, 88, 91
californiensis, $10,14,85,89,90,91$, 136, 173
diegensis, $11,85,88,89,91,136$, 173
falcata, 11, 89, 135, 173
soleniformis, $14,89,90$
stylina, 14,90
aequatorialis, Anadara (Cunearca),
194, 205, 206, 207, 230, 247
Arca, 206
albus, Mytilus, 9, 31
algosus, Mytilus, 9,25
Semimytilus, $9,10,11,12,13,14$, $24,25,27,28,32,110,163$
alternata, Barbatia (Calloarca), 178, 186, 219
Byssoarca, 186
americana, Lunarca, 208
Modiola, 67
americanum, Amygdalum, 10, 69, 70, 125, 171
americanus, Modiolus, 58, 60, 61, 66, 67, 123, 167
Mytilus, 9, 33

Amygdalum, 18, 68
americanum, $10,69,70,125,171$
arborescens, 69
beddomei, 69, 71
dendriticum, 68, 69
pallidulum, $13,69,70,71,73,123$, 171
politum, 69
(Amygdalum) arborescens, Modiolus, 10, 71
sagittatus, Modiolus, 70
Anadara, 193, 199
baughmani, 194
emarginata, 194
formosa, 194
gordita, 201
larkinii, 195
similis, 195
(Anadara), 193, 194, 195, 201
tuberculosa, 178, 195, 226, 243
(Cara), 194, 203, 205
(Cunearca), 193, 199, 205
aequatorialis, 194, 205, 206,
207, 230, 247
brasiliana, 194
chemnitzi, 194, 206
incongrua, 194
nux, 194, 205, 207, 229, 249
perlabiata, 194, 206
(Larkinia), 193, 195, 199
grandis, 178, 195, 226
multicostata, 193, 196, 197, 199, 200, 226
(Rasia), 194, 201
(Scapharca), 193, 194, 196, 199
auriculata, 194
aviculaeformis, 19+, 202, 204, 228, 245
biangulata, 194, 196, 200, 201, 202, 202, 204, 228
concinna, 194, 201
cumingiana, 178, 194, 196, 200, 228
emarginata, 203, 204, 229, 245
gordita, 194, 200
notabilis, 194
obesa, 194, 205, 207, 229, 249
reinharti, 196, 198, 198, 227, 243, 245
transversa, $19+$
(Anadara), Anadara, 193, 194, 195, 201
reinharti, Arca, 198
tuberculosa, Anadara, 178, 195, 226, 243
Anadarinae, 193
angustanus, Mytilus, 10, 19, 25
antiquata, Arca, 193
appendiculata, Lithophaga, 10, 95, 96
arborescens, Amygdalum, 69
Modiolus (Amygdalum), 10, 71
Mytilus, 68
Arca, 179, 186
aequatorialis, 206
antiquata, 193
auriculata, 202
aviculaeformis, 202
aviculoides, 202
barbata, 180
biangulata, 201
concinna, 200
cumingiana, 200
delgada, 212
divaricata, 188
emarginata, 203
gordita, 201
gradata, 189
grandis, 195
helblingii, 185
inaequivalvis, 196
incongrua, 205
limopsis, 192
modiolus, 43
multicostata, 196
noae, 179
nux, 205
obesa, 205
occidentalis, 179
ovata, 206
pholadiformis, 189
reeveana, 185
reversa, 211
similis, 195
subelongata, 206
tabogensis, 187
truncata, 180
tuberculosa, 195
ventricosa, 180
(Anadara) reinharti, 198
(Arca), 179
mutabilis,180, 181, 215, 239
pacifica, 179,214
zebra, 179
(Argina) vespertina, 209
(Byssoarca) pholadiformis, 189
(Arca), Arca, 179
mutabilis, Arca, 180, 181, 215, 239
pacifica, Arca, 179, 214
zebra, Arca, 179

Arcacea, 211
Arcidae, 178, 179
arciformis, Modiolus, 10, 51
Arcinae, 179, 188
Arcoperna, 6
recens, 81
Arcopsis, 192
adamsi, 193
solida, 190, 192, 223, 241, 243
Arcuatula, 17, 55, 58
demissa, 11, 13, 36, 54, 56, 119, 173
arcuatula, Modiola, 55
Argina, 208
(Argina) vespertina, Arca, 209
Arginarca, 208
aristata, Lithophaga, 97
(Myoforceps), 10, 11, 14, 98, 140, 175
gracilior, Lithophaga (Myoforceps) 98
tumidior, Lithophaga (Myoforceps) 98
aristatus, Mytilus, 10, 97, 98
ater, Aulacomya, 9, 10, 11, 12, 13, 33, 35, 111, 157
Mytilus, 10, 32, 33, 34
attenuata, Lithophaga, 99
(Labis), 10, 12, 85, 99, 101, 142, 175
Modiola, 10, 99
Aulacomya, 15, 17, 20, 32
ater, $9,10,11,12,13,33,35,111,157$
crenatus, 32
magellanica, 32
magellanicus, 32
auriculata, Anadara (Scapharca), 194 Arca, 202
aviculaeformis, Anadara (Scapharca), 194, 202, 204, 228, 245
Arca, 202
aviculoides, Arca, 202
bailyi, Acar, 189, 190, 222,
insularis, Acar, 241
barbata, Arca, 180
Barbatia (Barbatia), 192, 184, 188
barbatellus, Modiolus, 76, 77
Barbatia, 180
nova, 185
solidula, 182
(Acar) pernoides, 190, 191
reticulata, 189
rostae, 188
(Barbatia), 182, 184, 185
barbata, 182, 184, 188
cancellaria, 182, 184
listeri, 182
lurida, 182, 183, 216, 239
(Calloarca), 186
alternata, $178,186,219$
(Cucullaearca), 182, 184, 187
candida, 185
nivea, 185
reeveana, 182, 183, 185, 186, 187, 216, 239
lasperlensis, 185
velataformis, 185
(Fugleria), 187
illota, 183, 187, 219, 239
pseudoillota, 187
(Barbatia), Barbatia, 182, 184, 185
barbata, Barbatia, 182, 184, 188
cancellaria, Barbatia, 182, 184
listeri, Barbatia, 182
lurida, Barbatia, 182, 183, 216, 239
baughmani, Anadara, 194
beddomei, Amygdalum, 69, 71
biangulata, Anadara (Scapharca), 194, 196, 200, 201, 202, 202, 204, 228 Arca, 201
bicolor, Mytilus, 10
bidens, Mytilus, 10, 33
bifurcatus, Mytilus, 10, 37, 38, 41, 45
Septifer, 10, 12, 14, 38, 39, 40, 41, 113, 163
obsoletus, Septifer, 42
bilocularis, Mytilus, 40
Septifer, 42
bipennifer, Lithophaga, 97
biradiata, Modiola, 10, 64
bisulcata, Lithophaga, 96
Botula, 18, 83, 86, 88
cinnamomeus, 10,86
fusca, 10, 11, 85, 86, 173
Botulina, 76
denticulata, 11, 78
Botulopa, 89
Brachidontes, 1, 4, 5, 15, 16, 34, 36, 37, $38,40,43,55$
houstonius, 12, 44, 47, 118, 161
modiolus, 39, 43
multiformis, $12,13,39,44,117,161$ houstonius, 47
playasensis, $13,44,46,47,118,161$
puntarenensis, $13,39,44,46,47,118$, 161
purpuratus, $10,11,13,39,44,45,118$ 163
sp., 39
(Brachydontes) playasensis, Modiolus, 13, 46
Brachyodontes senhausi, 74
brasiliana, Anadara (Cunearca), 194
brasiliensis, Mytilus, 10 modiolus, 53
mutabilis, Modiola, 53
brevifrons bucaruana, Lunarca, 208
Lunarca, 208
bucaruana, Lunarca brevifrons, 208
Byssoarca alternata, 186
fusca, 182, 184
illota, 187
lima, 184
lurida, 182
mutabilis, 180
pacifica, 179
pernoides, 190
pusilla, 191
solida, 192
vespertilio, 182, 184
(Byssoarca) pholadiformis, Arca, 189
calcifer, Lithophaga, 94
Spondylus, 78
californianus, Mytilus, 10, 19, 21, 22, 27, 107, 157
californicus, Mytilus, 10, 22
californiensis, Adula, 10, 14, 85, 89, 90, 91, 136, 173
Modiola, 10, 90
(Calloarca), Barbatia, 186
alternata, Barbatia, 178, 186, 219
calyculata, Lithophaga (Stumpiella), 10, 93, 137, 175
calyculatus, Lithophagus, 10, 93, 96
campechiensis, Lunarca, 208
canaliculus, Mytilus, 10, 19
canalifera, Lithophaga, 95
(Diberus), 10, 85, 95, 137
Modiola, 95
(Lithodomus), 10
cancellaria, Barbatia (Barbatia), 182, 184
candida, Barbatia (Cucullaearca), 185
capax, Modiola, 10, 60
Modiolus, 10, 14, 58, 59, 60, 61, 66, 68, 119, 167
(Cara), Anadara, 194, 203, 205
carpenteri, Dactylus, 10, 98
castanea, Modiola, 71
castaneus, Lioberus, 71
caudatus, Lithophaga, 10, 98
caudigera, Modiola, 10, 97,98
charruanus, Mytilus, $10,50,51$
chemnitzi, Anadara (Cunearca), 194, 206
chenui, Gregariella, 11, 13, 73, 77, 78, 79, 126, 171
Mytilus, 77, 78
chilensis, Mytilus, 10, 19
edulis, $10,11,12,13,14,20,22$, 31
chiloensis, Mytilus, 10, 19
Chloromya, 9, 29
Choromytilus, $16,20,25,30$
chorus, $9,10,12,14,24,31,110,159$
palliopunctatus, $13,21,26,27,30$, 31, 110, 157
chorus, Choromytilus, $9,10,12,14,24$,
31, 110, 159
Mytilus, 10, 30, 31, 33
cinnamomea, Modiola, 86
cinnamomeus, Lithophagus, 10, 86
Botula, 10, 86
cinnamominus, Mytilus, 86
citrinus, Mytilus, 43
coalingensis, Crenomytilus, 23
coarctata, Crenella, 10, 77
Gregariella, 10, 11, 73, 77, 126, 173
columbiana, Crenella, 10, 81, 82
columbianum, Solamen, $10,12,13,82$, 85, 133, 171
concinna, Anadara (Scapharca), 194, 201
Arca, 200
Cucullaea, 200
coralliophagus, Mytilus, 11, 77, 78
corrugatus, Musculus, 11
Mytilus, 11
costata, Lunarca, 208
costulata, Modiola, 77
crassa, Tichogonia, 11
crassitesta, Mytilus, 19
crassus, Septifer, 41
crenatus, Aulacomya, 32
Mytilus, 11, 32, 33
Crenella, 1, 4, 17, 79, 82
coarctata, 10, 77
columbiana, $10,81,82$
decussata, $11,79,80,81,85,131,171$
divaricata, $11,12,80,128,171$
ecuadoriana, 11, 80
grisea, 12
inflata, 12, 80
leana, 12
megas, $12,81,82,83$
rotundata, 13, 81,82
Crenomytilus, 16, 23
coalingensis, 23
grayanus, $23,24,159$
kewi, 23
mathewsoni, 23
trampasensis, 23
Cucullaea concinna, 200
(Cucullaearca), Barbatia, 182, 184, 187
candida, Barbatia, 185
nivea, Barbatia, 185
reeveana, Barbatia, 182, 183, 185, 186, 187, 216, 239
lasperlensis, Barbatia, 185
velataformis, Barbatia, 185
cumingi, Septifer, 11,42
cumingiana, Anadara (Scapharca), $178,194,196,200,228$
Arca, 200
Lithophaga, 99
(Labis), 99
cumingianus, Musculus, 73
Mytilus, 11, 42
cumingii, Septifer, 42
(Cunearca), Anadara, 193, 199, 205
aequatorialis, Anadara, 194, 205, 206, 207, 230, 247
brasiliana, Anadara, 194
chemnitzi, Anadara, 194, 206
incongrua, Anadara, 194
nux, Anadara, 194, 205, 207, 229, 249
perlabiata, Anadara, 194, 206
cuneiformis, Mytilus, 11, 25
Dacrydium, 4, 17, 86, 87
fabale, 86,87
pacificum, 13, 86
pelseneeri, 87
(Quendreda), 86
elegantulum, 87, 134, 171
fabale, 87
dactyliformis, Mytilus, 11, 25
Dactylus, 91
carpenteri, 10, 98
decussata, Crenella, 11, 79, 80, 81, 85, 131, 171
decussatus, Mytilus, 11, 33, 79, 81
delgada, Arca, 212
Sheldonella, 178, 212, 212, 231
demissa, Arcuatula, 11, 13, 36, 54, 56, 119, 173
Modiola, 55
demissus, Mytilus, 11, 56, 58
dendriticum, Amygdalum, 68, 69
denticulata, Botulina, 11, 78
Gregariella, 11, 77, 79
Modiolaria, 11, 77, 79
desolationis, Mytilus, 20, 22
(Diberus), Lithophaga, 92, 94
canalifera, Lithophaga, 10, 85, 95 , 137
plumula, Lithophaga, $10,11,13,14$, $93,95,96,97,137,175$
gracilior, Lithophaga, 96
tumidior, Lithophaga, 96
subula, Lithophaga, 12, 14, 95, 97, 138, 175
diegensis, Adula, 11, 85, 88, 89, 91, 136,
173
Modiolus, 11, 91
Mytilus, 11, 20, 22, 23 edulis, 20, 21, 27, 157
discors, Musculus, 11, 73
Mytilus, 11, 72, 74
divaricalx, Lithophaga, 94
divaricata, Arca, 188
Crenella, 11, 12, 80, 128, 171
Modiola, 77
Nuculocardia, 11, 80
Doliolabis, 99
domingensis, Acar, 190
dunkeri, Mytilus, 11, 20, 22, 23
ecuadoriana, Crenella, 11, 80
edulis, Mytilus, $10,11,12,13,14,18,19$, $21,22,27,33,105,157$
chilensis, Mytilus, $10,11,12,13,14$, 20, 22, 31
diegensis, Mytilus, 20, 21, 27, 157
latissimus, Mytilus, 12, 19
patagonicus, Mytilus, 20
planulatus, Mytilus, 20, 22
platensis, Mytilus, 20, 22
eiseni, Modiolus, 10, 11, 58, 59, 64, 121, 167
elegantulum, Dacrydium (Quendreda), 87, 134, 171
elongatus, Modiolus, 71
Mytilus, 11, 30, 33
emarginata, Anadara, 194
(Scapharca), 203, 204, 229, 245
Arca, 203
(Eontia) ponderosa, Noetia, 213
Eumodiolus, 56
Eumytilus, 18
(Eumytilus) patagonicus, Mytilus, 19
exaratus, Mytilus, 11, 45
excavata, Modiola, (Lithodomus), 97
exilis, Mytilus, 11, 45
Exodiberus, 94
exusta, Hormomya, 39
exustus, Mytilus, 32, 33, 36, 46
fabale, Dacrydium, 86, 87
(Quendreda), 87
falcata, Adula, 11, 89, 135, 173
Mytella, 10, 11, 12, 14, 34, 48, 49, $50,53,54,118,165$
falcatus, Lithodomus, 11, 89
Mytilus, 11, 50, 51
Falcimytilus, 6, 14
fischerianus, Mytilus, 11, 19
flabellata, Volsella, 11, 64
flabellatus, Modiolus, 63 rectus, 169
Mytilus (Modiola), 11, 63
forficatus, Lithodomus, 11, 98
formosa, Anadara, 194
fornicata, Modiola, 11, 62
fornicatus, Modiolus, 11, 58, 59, 62, 66, 120, 167
(Fugleria), Barbatia, 187
illota, Barbatia, 183, 187, 219, 239
pseudoillota, Barbatia, 187
Fulgida, 58
fulgida, Perna, 58
fusca, Botula, 10, 11, 85, 86, 173
Byssoarca, 182, 184
fuscus, Mytilus, 11, 83, 86
galloprovincialis, Mytilus, 19, 20
giganteus, Mytilus, 19
glomeratus, Mytilus, 11, 19, 22
Glycymeracea, 192, 210
Glycymeridae, 210
gordita, Anadara, 201
(Scapharca), 194, 200
Arca, 201
gracilior, Lithophaga (Diberus) plumula, 96
(Myoforceps) aristata, 98
Lithophagus, 11
gradata, Acar, 188, 189, 190, 191, 192, 219, 241
gradata, 188

Arca, 189
gradata, Acar, 188
panamensis, Acar, 188
grandis, Anadara (Larkinia), 178, 195, 226
Arca, 195
granulata, Hormomya, 12, 13, 37, 39, 40, 111, 161
granulatus, Mytilus, 12, 40
grayanus, Crenomytilus, 23, 24, 159
Mytilus, 12, 22, 23
Gregariella, 17, 76
chenui, 11, 13, 73, 77, 78, 79, 126, 171
coarctata, $10,11,73,77,126,173$
denticulata, 11, 77, 79
grisea, Crenella, 12
grunerianus, Mytilus, 19
guyanensis, Modiola, 12, 48, 53
Mytella, 10, 12, 13, 14, 48, 49, 50, 50, 52, 53, 119, 165
hamatus, Mytilus, 12, 34, 36
hancocki, Lithophaga (Leiosolenus), 102, 144, 175
helblingii, Arca, 185
Hormomya, 1, 15, 17, 36, 40, 43, 44, 46 adamsiana, $9,10,14,37,39,45,47$ 111, 161
exusta, 39
granulata, 12, 13, 37, 39, 40, 111, 161 sp., 39
(Hormomya) puntarenensis, Mytilus, 13, 46
houstonius, Brachidontes, 12, 44, 47, 118, 161
multiformis, 47
hupeanus, Mytilus, 12, 19
Idasola, 4, 6
illota, Barbatia (Fugleria), 183, 187, 219, 239
Byssoarca, 187
impacta, Modiolarca, 74
impactus, Musculus, 73, 74
impressa, Modiolaria, 12
impressus, Musculus, 12
inaequivalvis, Arca, 196
inca, Lithodomus, 12, 99, 100
incongrua, Anadara (Cunearca), 194 Arca, 205
incurva, Myoconcha, 23, 29
inezensis, Mytella, 48
inflata, Crenella, 12, 80
infumatus, Mytilus, 12,19
insularis, Acar pusilla, 191 bailyi, 241
Ischadium, 17, 34
recurvus, $12,13,35,36$
kelseyi, Lithophaga, 12
plumula, 95, 97
kerguelensis, Mytilus, 20
kewi, Crenomytilus, 23
labiata, Modiola, 12
(Labis), Lithophaga, 93, 96, 99
attenuata, Lithophaga, $10,12,85,99$, 101, 142, 175
cumingiana, Lithophaga, 99
peruviana, Lithophaga, 13, 99, 100, 143, 175
laevigata, Modiola, 12
laevigatus, Musculus, 12
laevis, Modiolaria, 12
Musculus, 12
Lanistes, 74
Lanistina, 74 sp., 12
(Larkinia), Anadara, 193, 195, 199 grandis, Anadara, 178, 195, 226 multicostata, Anadara, 193, 196, 197, 199, 200, 226
larkinii, Anadara, 195
lasperlensis, Barbatia (Cucullaearca) reeveana, 185
latissimus, Mytilus edulis, 12,19
latus, Mytilus, 12, 31
leana, Crenella, 12
lebourae, Musculus, 73, 74
Leiosolenus, 101
spatiosus, 14, 101, 102
(Leiosolenus), Lithophaga, 93, 101
hancocki, Lithophaga, 102, 144, 175
spatiosa, Lithophaga, 9, 13, 14, 101, 102, 143, 175
lignea, Modiola, 58
lima, Byssoarca, 184
Lithophaga, 103
limopsis, Arca, 192
Lioberus, 18, 57, 58, 71
castaneus, 71
salvadoricus, $13,72,73,126,171$
listeri, Barbatia (Barbatia), 182
Lithodomus, 91
falcatus, 11, 89
forficatus, 11,98
inca, 12, 99, 100
peruvianus, 13, 100
pessulatus, 95
subula, 14, 95, 97
(Lithodomus) canalifera, Modiola, 10
excavata, Modiola, 97
plumula, Modiola, 13
Lithophaga, 4, 18, 88, 89, 91, 92, 101
abbotti, 9, 95, 101, 102
appendiculata, 10, 95, 96
aristata, 97
attenuata, 99
bipennifer, 97
bisulcata, 96
calcifer, 94
canalifera, 95
caudatus, 10,98
cumingiana, 99
divaricalx, 94
kelseyi, 12
lima, 103
mytuloides, 91
patagonica, 101
peruviana, 99
plumula, 95
kelseyi, 95, 97
(Diberus), 92, 94
canalifera, $10,85,95,137$
plumula, $10,11,13,14,93,95$, 96, 97, 137, 175
gracilior, 96
tumidior, 96
subula, $12,14,95,97,138,175$
(Labis), 93, 96, 99
attenuata, 10, 12, 85, 99, 101, 142, 175
cumingiana, 99
peruviana, $13,99,100,143,175$
(Leiosolenus), 93, 101
hancocki, 102, 144, 175
spatiosa, $9,13,14,101,102$, 143, 175
(Myoforceps), 93, 94, 97
aristata, $10,11,14,98,140,175$
gracilior, 98
tumidior, 98
(Stumpiella), 92, 93
calyculata, 10, 93, 137, 175
Lithophagus, 91
calyculatus, $10,93,96$
cinnamomeus, 10, 86
gracilior, 11
rugiferus, 13, 101, 102
tumidior, 14
lithophagus, Mytilus, 91
Lunarca, 208
americana, 208
brevifrons, 208
bucaruana, 208
campechiensis, 208
costata, 208
melanoderma, 208
ovalis, 208, 209, 210
pexata, 208, 210
vespertina, 208, 209, 209, 230, 247
sp., 209, 210, 230, 247
lurida, Barbatia (Barbatia), 182, 183, 216, 239
Byssoarca, 182
Macrocystis, 29
magellanica, Aulacomya, 32
Perna, 12, 29, 30
magellanicus, Aulacomya, 32
Mytilus, 12, 30, 32, 33, 34
maoica, Noetia (Sheldonella), 211
marmorata, Mytilus (Modiola), 12
marmoratus, Musculus, 73, 74
mathewsoni, Crenomytilus, 23
maximus, Pecten, 76
megas, Crenella, 12, 81, 82, 83
melanoderma, Lunarca, 208
Modiella, 68
Modiola, 55, 56, 76
americana, 67
arcuatula, 55
attenuata, 10, 99
biradiata, 10, 64
brasiliensis mutabilis, 53
californiensis, 10,90
canalifera, 95
capax, 10, 60
castanea, 71
caudigera, 10, 97, 98
cinnamomea, 86
costulata, 77
demissa, 55
divaricata, 77
fornicata, 11, 62
guyanensis, 12, 48, 53
labiata, 12
laevigata, 12
lignea, 58
mutabilis, 12,51
nigra, 12
nitens, 51
opifex, $13,76,77,78$
papyria, 48
petagnae, 77
philippinarum, 58
picta, 53
planulata, 53
plicatula, 13, 55, 56
plumula, 94, 96
purpurata, 13, 45
recta, 13, 63
semicostata, 13, 56
semifusca, 13, 53
semilaevis, 13, 44
senhausi, 13
senhausii, 74
senhousia, 74
sinuosa, 13, 53
spatula, 60
speciosa, 14,52
strigata, 51
subfuscata, 14,60
subpurpureus, 51
substriata, 14
sulcata, 43
tulipa, 67
(Lithodomus) canalifera, 10
excavata, 97
plumula, 13
(Modiola) flabellatus, Mytilus, 11, 63
marmorata, Mytilus, 12
Modiolarca, 74
impacta, 74
Modiolaria, 71, 72, 74
denticulata, 11, 77, 79
impressa, 12
laevis, 12
seminuda, 13
taylori, 14
vernicosa, 14
Modiolatus, 58
Modiolopsidae, 3, 57
Modiolus, 1, 3, 4, 5, 18, 29, 55, 56, 67,
$69,71,74,88,91$
americanus, $58,60,61,66,67,123$, 167
arciformis, 10,51
barbatellus, 76, 77
capax, $10,14,58,59,60,61,66,68$, 119, 167
diegensis, 11, 91
eiseni, $10,11,58,59,64,121,167$
elongatus, 71
flabellatus, 63
fornicatus, $11,58,59,62,66,120$, 167
modiolus, $12,58,60,61,66,67,68$
neglectus, 11, 13, 58, 59, 61, 63, 64, 121, 169
nonuranus, 12,25
pallidulus, 13, 69
politus, 13
recta, 13
rectus, 11, 13, 59, 63, 65, 121, 169 flabellatus, 169
sacculifer, $11,12,13,58,59,61,62$, 65, 122
senhousei, 74
sulcatus, 76, 77
tumbezensis, 14, 52
sp., 61
(Amygdalum) arborescens, 10, 71 sagittatus, 70
(Brachydontes) playasensis, 13, 46
modiolus, Arca, 43
brasiliensis, Mytilus, 53
Brachidontes, 39, 43
Modiolus, 12, 58, 60, 61, 66, 67, 68
Mytilus, 12, 56, 66
multicostata, Anadara (Larkinia), 193, 196, 197, 199, 200, 226
Arca, 196
multiformis, Brachidontes, 12, 13, 39, 44, 117, 161
Mytilus, 12, 44
houstonius, Brachidontes, 47
Murex, 205
regius, 78
Musculus, 4, 17, 18, 57, 71, 72, 76
corrugatus, 11
cumingianus, 73
discors, 11, 73
impactus, 73, 74
impressus, 12
laevigatus, 12
laevis, 12
lebourae, 73, 74
marmoratus, 73, 74
niger, 12, 75
protractus, 75
obesus, 12
olivaceus, $12,74,75,126,171$
phenax, 13
protractus, 13, 74, 75
seminudus, 13
senhousei, 13, 74
substriatus, 14
taylori, 14
vernicosus, 14
mutabilis, Arca (Arca), 180, 181, 215, 239
Byssoarca, 180
Modiola, 12, 51
brasiliensis, 53
Mya perna, 13, 29, 30
Myoconcha incurva, 23, 29
(Myoforceps), Lithophaga, 93, 94, 97
aristata, Lithophaga, $10,11,14,98$, 140, 175
gracilior, Lithophaga, 98
tumidior, Lithophaga, 98
Myoparo, 79
Myrina, 91
Mytella, 16, 47, 69
falcata, $10,11,12,14,34,48,49,50$, $53,54,118,165$
guyanensis, $10,12,13,14,48,49,50$, $50,52,53,119,165$
inezensis, 48
restorationis, 48
speciosa, $14,48,49,50,52,165$
Mytilacea, 6
Mytilidae, 3, 57
Mytiloconcha, 23, 29
Mytilus, 3, 5, 6, 14, 16, 18, 23, 25, 34, 36, 41, 47, 52
achatinus, 30
adamsianus, $9,37,46$
albus, 9, 31
algosus, 9, 25
americanus, 9, 33
angustanus, $10,19,25$
arborescens, 68
aristatus, 10, 97, 98
ater, 10, 32, 33, 34
bicolor, 10
bidens, 10, 33
bifurcatus, $10,37,38,41,45$
bilocularis, 40
brasiliensis, 10
californianus, $10,19,21,22,27,107$, 157
californicus, 10,22
canaliculus, 10,19
charruanus, $10,50,51$
chenui, 77, 78
chilensis, 10, 19
chiloensis, 10,19
chorus, $10,30,31,33$
cinnamominus, 86
citrinus, 43
coralliophagus, 11, 77, 78
corrugatus, 11
crassitesta, 19
crenatus, $11,32,33$
cumingianus, 11,42
cuneiformis, 11,25
dactyliformis, 11, 25
decussatus, $11,33,79,81$
demissus, 11, 56, 58
desolationis, 20, 22
diegensis, 11, 20, 22, 23
discors, 11, 72, 74
dunkeri, $11,20,22,23$
edulis, $10,11,12,13,14,18,19,21$, $22,27,33,105,157$
chilensis, $10,11,12,13,14,20$, 22, 31
diegensis, 20, 21, 27, 157
latissimus, 12, 19
patagonicus, 20
planulatus, 20, 22
platensis, 20, 22
elongatus, 11, 30, 33
exaratus, 11,45
exilis, 11,45
exustus, 32, 33, 36, 46
falcatus, 11, 50, 51
fischerianus, 11, 19
fuscus, 11, 83, 86
galloprovincialis, 19, 20
giganteus, 19
glomeratus, 11, 19, 22
granulatus, 12, 40
grayanus, 12, 22, 23
grunerianus, 19
hamatus, 12, 34, 36
hupeanus, 12, 19
infumatus, 12,19
kerguelensis, 20
latus, 12, 31
lithophagus, 91
magellanicus, 12, 30, 32, 33, 34
modiolus, 12, 56, 66
brasiliensis, 53
multiformis, 12, 44
nitens, 12, 51
obesus, 12, 19
oblongus, 12
orbignyanus, 13,33
ovalis, 45
palliopunctatus, 13, 31
patagonicus, $13,20,25$
pellucidus, 13, 19
perna, 30
pilosus, 13
planulatus, 13, 19
platensis, 19
plicatus, 58
puntarenensis, 38
pyriformis, 13, 33
recurvus, $13,34,36$
septentrionalis, 19
similis, 13,25
sinuatus, 51
soleniformis, $14,88,90$
spatula, 14
splendens, 14,25
stearnsi, 14, 37, 38
strigatus, 14, 50, 51
trifurcatus, 14, 41
trossulus, 14, 19
ungulatus, 14, 31
violaceus, 14,19
vitrea, 86
(Eumytilus) patagonicus, 19
(Hormomya) puntarenensis, 13, 46
(Modiola) flabellatus, 11, 63 marmorata, 12
mytuloides, Lithophaga, 91
neglectus, Modiolus, 11, 13, 58, 59, 61, $63,64,121,169$
niger, Musculus, 12, 75
protractus, Musculus, 75
nigra, Modiola, 12
nitens, Modiola, 51
Mytilus, 12, 51
nivea, Barbatia (Cucullaearca), 185
noae, Arca, 179
nodosus, Pecten, 76
Noetia, 211
ponderosa, 211
triangularis, 211
(Eontia) ponderoso, 213
(Noetia), 211 reversa, 211, 212, 213, 230
(Sheldonella) maoica, 211
(Noetia), Noetia, 211
reversa, Noetia, 211, 212, 213, 230
Noetiidae, 192, 210
Noetiinae, 178, 210, 211
nonuranus, Modiolus, 12, 25
notabilis, Anadara (Scapharca), 194
nova, Barbatia, 185
Nuculocardia, 79
divaricata, 11, 80
nux, Anadara (Cunearca), 194, 205, 207, 229, 249
Arca, 205
obesa, Anadara (Scapharca), 194, 205, 207, 229, 249
Arca, 205
obesus, Musculus, 12
Mytilus, 12, 19
Obliquarca, 182
oblongus, Mytilus, 12
obsoletus, Septifer, 12
bifurcatus, 42
occidentalis, Arca, 179
olivaceus, Musculus, 12, 74, 75, 126, 171
opifex, Modiola, 13, 76, 77, 78
orbignyanus, Mytilus, 13, 33

Ostrea, 102
ovalis, Lunarca, 208, 209, 210 Mytilus, 45
ovata, Arca, 206
pacifica, Arca (Arca), 179, 214 Byssoarca, 179
pacificum, Dacrydium, 13, 86
pallidulum, Amygdalum, 13, 69, 70, 71, $73,123,171$
pallidulus, Modiolus, 13, 69
palliopunctatus, Choromytilus, 13,21 , $26,27,30,31,110,157$
Mytilus, 13, 31
panamensis, Acar, 189 gradata, 188
papyria, Modiola, 48
patagonica, Lithophaga, 101
patagonicus, Mytilus, 13, 20, 25
(Eumytilus), 19
edulis, 20
Pavona, 103
Pecten maximus, 76
nodosus, 76
Pedalion, 29
pellucidus, Mytilus, 13, 19
pelseneeri, Dacrydium, 87
perlabiata, Anadara (Cunearca), 194, 206
Perna, 9, 16, 23, 25, 29, 30, 56, 88
fulgida, 58
magellanica, 12, 29, 30
perna, $11,12,13,24,30,33$
perna, Mya, 13, 29, 30
Mytilus, 30
Perna, 11, 12, 13, 24, 30, 33
pernoides, Acar, 189, 190
Barbatia (Acar), 190, 191
Byssoarca, 190
peruviana, Lithophaga, 99
(Labis), 13, 99, 100, 143, 175
peruvianus, Lithodomus, 13, 100
pessulatus, Lithodomus, 95
petagnae, Modiola, 77
pexata, Lunarca, 208, 210
phenax, Musculus, 13
philippinarum, Modiola, 58
Philobryidae, 3
pholadiformis, Arca, 189
(Byssoarca), 189
picta, Modiola, 53
pilosus, Mytilus, 13
Pinctada, 102
Pinna, 33
Pinnotheres, 70
planulata,Modiola, 53
planulatus, Mytilus, 13, 19
edulis, 20, 22
platensis, Mytilus, 19
edulis, 20, 22
playasensis, Brachidontes, 13, 44, 46, 47, 118,161

Modiolus (Brachydontes), 13, 46
plicatula, Modiola, 13, 55, 56
plicatus, Mytilus, 58
plumula, Lithophaga, 95
(Diberus), 10, 11, 13, 14, 93, $95,96,97,137,175$
Modiola, 94, 96
(Lithodomus), 13
gracilior, Lithophaga (Diberus), 96
kelseyi, Lithophaga, 95, 97
tumidior, Lithophaga (Diberus), 96
politum, Amygdalum, 69
politus, Modiolus, 13
ponderoso, Noetia, 211
(Eontia), 213
Promytilus, 6, 14
protractus, Musculus, 13, 74, 75
niger, 75
pseudoillota, Barbatia (Fugleria), 187
puntarenensis, Brachidontes, 13, 39, 44,
$46,47,118,161$
Mytilus, 38
(Hormomya), 13, 46
purpurata, Modiola, 13, 45
purpuratus, Brachidontes, 10, 11, 13, 39, $44,45,118,163$
pusilla, Acar, 178, 189, 190, 191, 223, 241
Byssoarca, 191
insularis, Acar, 191
pyriformis, Mytilus, 13, 33
Quendreda, 17, 86
(Quendreda), Dacrydium, 86
elegantulum, Dacrydium, 87, 134, 171
fabale, Dacrydium, 87
(Rasia), Anadara, 194, 201
recens, Arcoperna, 81
recta, Modiola, 13, 63
Modiolus, 13
Vosella, 64
rectus, Modiolus, $11,13,59,63,65,121$, 169
flabellatus, Modiolus, 169
recurvus, Ischadium, 12, 13, 35, 36
Mytilus, 13, 34, 36
reeveana, Arca, 185
Barbatia (Cucullaearca), 182, 183, 185, 186, 187, 216, 239
lasperlensis, Barbatia
(Cucullaearca), 185
velataformis, Barbatia
(Cucullaearca), 185
regius, Murex, 78
reinharti, Anadara (Scapharca), 196,
198, 198, 227, 243, 245
Arca (Anadara), 198
restorationis, Mytella, 48
reticulata, Acar, 190, 191
Barbatia (Acar), 189
reversa, Arca, 211
Noetia (Noetia), 211, 212, 213, 230
rex, Solamen, 81,82
rostae, Barbatia (Acar), 188
rotundata, Crenella, 13, 81, 82
rugiferus, Lithophagus, 13, 101, 102
sacculifer, Modiolus, 11, 12, 13, 58, 59,
61, 62, 65, 122
Volsella, 13, 65
sagittatus, Modiolus (Amygdalum), 70
Salebrolabis, 94
salvadorica, Volsella, 13, 58, 71
(Volsella), 72
salvadoricus, Lioberus, $13,72,73,126$, 171
(Scapharca), Anadara, 193, 194, 196, 19؟
auriculata, Anadara, 194
aviculaeformis, Anadara, 194, 202, 204, 228, 245
biangulata, Anadara, 194, 196, 200 , 201, 202, 202, 204, 228
concinna, Anadara, 194, 201
cumingiana, Anadara, 178, 194, 196, 200, 228
emarginata, Anadara, 203, 204, 229, 245
gordita, Anadara, 194, 200
notabilis, Anadara, 194
obesa, Anadara, 194, 205, 207, 229, 249
reinharti, Anadara, 196, 198, 198, 227, 243, 245
transversa, Anadara, 194
semicostata, Modiola, 13, 56
semifusca, Modiola, 13, 53
semilaevis, Modiola, 13, 44
Semimytilus, 16, 18, 25
algosus, $9,10,11,12,13,14,24,25$, $27,28,32,110,163$
seminuda, Modiolaria, 13
seminudus, Musculus, 13
senhausi, Brachyodontes, 74
Modiola, 13
senhausii, Modiola, 74
senhousei, Modiolus, 74
Musculus, 13, 74
senhousia, Modiola, 74
septentrionalis, Mytilus, 19
Septifer, 6, 16, 37, 40, 41
bifurcatus, $10,12,14,38,39,40,41$, 113,163 obsoletus, 42
bilocularis, 42
crassus, 41
cumingi, 11, 42
cumingii, 42
obsoletus, 12
zeteki, 11, 14, 39, 41, 42, 115, 163
Sheldonella, 211, 212
delgada, 178, 212, 212, 231
(Sheldonella) maoica, Noetia, 211
sibogae, Solamen, 82
similis, Anadara, 195
Arca, 195
Mytilus, 13, 25
sinuatus, Mytilus, 51
sinuosa, Modiola, 13, 53
Solamen, 17, 81
columbianum, $10,12,13,82,85,133$, 171
rex, 81, 82
sibogae, 82
soleniformis, Adula, 14, 89, 90
Mytilus, 14, 88, 90
solida, Arcopsis, 190, 192, 223, 241, 243
Byssoarca, 192
solidula, Barbatia, 182
spatiosa, Lithophaga (Leiosolenus), 9, $13,14,101,102,143,175$
spatiosus, Leiosolenus, $14,101,102$
spatula, Modiola, 60 Mytilus, 14
speciosa, Modiola, 14, 52 Mytella, 14, 48, 49, 50, 52, 165
splendens, Mytilus, 14, 25
splendida, Volsella, 14
Spondylus, 96, 205
calcifer, 78
Stalagmium, 79
stearnsi, Mytilus, 14, 37, 38
Striarca, 192
Striarcinae, 192, 210
strigata, Modiola, 51
strigatus, Mytilus, 14, 50, 51
(Stumpiella), Lithophaga, 92, 93
calyculata, Lithophaga, 10, 93, 137, 175
stylina, Adula, 14, 90
subelongata, Arca, 206
subfuscata, Modiola, 14, 60
subpurpureus, Modiola, 51
substriata, Modiola, 14
substriatus, Musculus, 14
subula, Lithodomus, 14, 95, 97
Lithophaga (Diberus), 12, 14, 95, 97, 138, 175
sulcata, Modiola, 43
sulcatus, Modiolus, 76,77
tabogensis, Arca, 187
taylori, Modiolaria, 14
Musculus, 14
Terua, 89
Tibialectus, 76
Tichogonia crassa, 11
trampasensis, Crenomytilus, 23
transversa, Anadara (Scapharca), 194
triangularis, Noetia, 211
Trichomusculus, 76
trifurcatus, Mytilus, 14, 41
Trinacriinae, 211
trossulus, Mytilus, 14, 19
truncata, Arca, 180
tuberculosa, Anadara (Anadara), 178, 195, 226, 243
Arca, 195
tulipa, Modiola, 67
tumbezensis, Modiolus, 14, 52
tumidior, Lithophaga (Diberus)
plumula, 96
(Myoforceps) aristata, 98
Lithophagus, 14
ungulatus, Mytilus, 14, 31
velataformis, Barbatia (Cucullaearca) reeveana, 185
ventricosa, Arca, 180
vernicosa, Modiolaria, 14
vernicosus, Musculus, 14
vespertilio, Byssoarca, 182, 184
vespertina, Arca (Argina), 209
Lunarca, 208, 209, 209, 230, 247
violaceus, Mytilus, 14, 19
vitrea, Mytilus, 86
Volsella, 4, 56, 57
flabellata, 11, 64
recta, 64
sacculifer, 13,65
salvadorica, 13, 58, 71
splendida, 14
(Volsella) salvadorica, 72
(Volsella) salvadorica, Volsella, 72
Volsellina, 6, 57
zebra, Arca (Arca), 179
Zelithophaga, 89
zeteki, Septifer, $11,14,39,41,42,115$, 163

[^0]: ?Lithophaga (Leiosolenus) spatiosa Carpenter 1856
 Hormomya adamsiana Dunker 1856
 Choromytilus chorus Molina 1782
 Semimytilus algosus Gould 1850
 Aulacomya ater Molina 1782

[^1]: N of Isla Angel de la Guarda

 Anchorage，Punta Refugio，Isla Angel de la Guarda

 Isla Patos
 Bahía de los Angeles
 Entrance，Bahíg de los Angeles
 Ensenada de San Francisco，Sonora
 Isla San Pedro Nolasco
 Off Isla Ildefonso
 Punta Púlpito
 Isla del Carmen，Bahía Salinas
 Isla del Carmen，Bahía Salinas

 ## Carmen

 064－40
 Ninñ
 సิे్స⿳
 nonen
 ゅのゅか

 NNNNMNNNNN

[^2]: *After the present manuscript was finished, Dr. S. Stillman Berry (Leaflets of Malacology, vol. 1, no. 12, July 1, 1954) gave this form a new name, Barbatia (Acar) rostae, considering it to be a valid species with good characters separating it from A. gradata.

[^3]: Galapagos Islands

 | $154-34$ | Reef north of Cerro Tagus，Isla Isabela
 （Albemarle Island） |
 | ---: | :--- |
 | 157－34 | Ensenada Tagus，Isla Isabela
 （Albemarle Island） |
 | $350-35$ | Isla Baltra（South Seymour Island） |
 | 173－34 | Off Isla Baltra（South Seymour Island）
 $82-33$ |
 | Bahía de Conway，Isla Santa Cruz
 （Indefatigable Island） | |
 | 11－32 | Bahía de Conway，Isla Santa Cruz
 （Indefatigable Island） |
 | 187－34 | Bahía de Cartago，Isla Isabela（Albemarle
 Island） |

[^4]: Anadara (Scapharca) reinharti (Lowe)
 Mexico: Gulf of California

